Interests

Areas: Machine Learning, Optimization, Human-Centered Design

Topics: Safety, Interpretability, Algorithmic Fairness, Personalization, Governance

Applications: Medicine, Consumer Finance, Criminal Justice, Physical Sciences


Recent Papers

Avni Kothari, Bogdan Kulynych, Lily Weng, Berk Ustun
ICLR • International Conference on Learning Representations, 2024

Spotlight Paper at ICLR 2024

Hailey Joren, Charles T Marx, Berk Ustun
ICLR • International Conference on Learning Representations, 2024
Talia Gillis, Vitaly Mersault, Berk Ustun
FAccT • ACM Conference on Fairness, Accountability, and Transparency, 2024
Hailey Joren, Chirag Nagpal, Katherine Heller, Berk Ustun
NeurIPS • Neural Information Processing Systems, 2023
Vinith M. Suriyakumar, Marzyeh Ghassemi, Berk Ustun
ICML • International Conference on Machine Learning, 2023

Oral Presentation at ICML 2023

Jamelle Watson-Daniels, David Parkes, Berk Ustun
AAAI • Association for Advancement in Artificial Intelligence, 2023

Oral Presentation at AAAI 2023

Eric Yamga, Sreekar Mantena, Darin Rosen, Emily Bucholz, Robert Yeh, Leo Celi, Berk Ustun, Neel Butala
Journal of the American Heart Association, 2023

Machine Learning Methods

Jayanth Yetukuri, Ian Hardy, Yevgeniy Vorobeychik, Berk Ustun, Yang Liu
AAAI • Association for the Advancement of Artificial Intelligence, 2024
Jennifer Chien, Margaret Roberts, Berk Ustun
EAAMO • ACM Conference on Equity and Access in Algorithms, Mechanisms, and Optimization, 2023
Lucas Monteiro Paes, Carol Long, Berk Ustun, Flavio Calmon
NeurIPS • Neural Information Processing Systems, 2022
Sejoon Oh, Berk Ustun, Julian McAuley, Srijan Kumar
CIKM • Conference on Information and Knowledge Management, 2022
Haoran Zhang, Quaid Morris, Berk Ustun, Marzyeh Ghassemi
NeurIPS • Neural Information Processing Systems, 2020
Charles Marx, Flavio du Pin Calmon, Berk Ustun
ICML • International Conference on Machine Learning, 2020
Berk Ustun, Alexander Spangher, Yang Liu
FAT* • ACM Conference on Fairness, Accountability and Transparency, 2019
Berk Ustun, Yang Liu, David Parkes
ICML • International Conference on Machine Learning, 2019
Hao Wang, Berk Ustun, Flavio du Pin Calmon
ICML • International Conference on Machine Learning, 2019
Hao Wang, Berk Ustun, Flavio du Pin Calmon
ISIT • IEEE International Symposium on Information Theory, 2018
Berk Ustun, Cynthia Rudin
KDD • Knowledge Discovery and Data Mining, 2017
Berk Ustun, Cynthia Rudin
MLJ • Machine Learning, 2015

Accompanies Winning Entry for 2016 INFORMS Innovative Applications in Analytics Award

Berk Ustun, Stefano Tracà, Cynthia Rudin
AAAI Late Breaking Track, 2013
Panos Parpas, Berk Ustun, Mort Webster, Quang Kha Tran
INFORMS Journal of Computing, 2015

Applications

Amanda Morrison, Berk Ustun, Arielle Horenstein, Simona Kaplan, Irismar Reis de Oliveira, Sedat Batmaz, James Gross, Ekaterina Sadikova, Curt Hemanny, Pedro Pires, Philippe Goldin, Ronald Kessler, Richard G. Heimberg
Journal of Anxiety Disorders, 2022
Kelly Zuromski, Berk Ustun, Irving Hwang, Terence Keane, Brian Marx, Murray Stein, Robert Ursano, Ronald Kessler
Depression and Anxiety, 2019
Berk Ustun, Lenard Adler, Cynthia Rudin, Stephen Faraone, Thomas Spencer, Patricia Berglund, Michael Gruber, Ronald Kessler
JAMA Psychiatry, 2017
Aaron Struck, Berk Ustun, Andres Rodriguez Ruiz, Jong Woo Lee, Suzette LaRoche, Lawrence J. Hirsch, Emily J. Gilmore, Jan Vlachy, Hiba Arif Haider, Cynthia Rudin, M. Brandon Westover
JAMA Neurology, 2017
Jiaming Zeng, Berk Ustun, Cynthia Rudin
Journal of the Royal Statistical Society: Series A, 2016

Winner of the 2016 USRESP Competition

Berk Ustun, M. Brandon Westover, Cynthia Rudin, Matt Bianchi
Journal of Clinical Sleep Medicine, 2015

Theses

Berk Ustun
PhD thesis. Massachusetts Institute of Technology, 2017
Berk Ustun
Master's thesis. Massachusetts Institute of Technology, 2012