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ABSTRACT

Risk scores are simple classification models that let users quickly
assess risk by adding, subtracting, and multiplying a few small num-
bers. Such models are widely used in healthcare and criminal justice,
but are often built ad hoc. In this paper, we present a principled
approach to learn risk scores that are fully optimized for feature
selection, integer coefficients, and operational constraints. We for-
mulate the risk score problem as a mixed integer nonlinear program,
and present a new cutting plane algorithm to efficiently recover its
optimal solution. Our approach can fit optimized risk scores in a
way that scales linearly with the sample size of a dataset, provides
a proof of optimality, and obeys complex constraints without pa-
rameter tuning. We illustrate these benefits through an extensive
set of numerical experiments, and an application where we build a
customized risk score for ICU seizure prediction.
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1 INTRODUCTION

Risk scores are simple linear classification models to assess risk by
adding, subtracting, and multiplying a few small numbers. These
models let users make quick predictions, without extensive training,
and without use of a computer.

Despite widespread use in medicine and criminal justice, there
has been no principled approach to learn risk scores from data. This
is partly due to the challenging nature of the learning problem: risk
scores need to be rank-accurate (i.e., high AUC), risk-calibrated,
sparse, and use small integer coefficients. In practice, domain ex-
perts may also require risk scores to satisfy operational constraints
before they can be deployed, such as limits on model size (“use at
most 5 features”), feature composition (“if the model uses Hyperten-
sion, then it should also use Age > 75”), and prediction (“predicted
risk should be lower for males than females”).

The extensive set of requirements is best illustrated by the fact
that many existing models used in practice are built ad hoc [see
e.g., 1]. Existing models are built by a panel of experts (e.g., the
CHADS; score in Figure 1) or by combining multiple heuristics (e.g.,
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1. Congestive Heart Failure 1 point
2. Hypertension 1 point | +
3. Age>75 1 point | +
4. Diabetes Mellitus 1 point | +
5. Prior Stroke or Transient Ischemic Attack 2 points | +
ADD POINTS FROM ROWS 1-5 SCORE | =

[ SCORE [o[1[z[3[4[5[‘;]
| STROKE RISK | 1.9% | 2.8% | 4.0% | 5.9% | 8.5% | 12.5% | 18.2% |

Figure 1: CHADS; score to assess stroke risk [12]. Such
models are widely used for risk assessment in medicine (see
www.mdcalc.com) and criminal justice [8, 13, 25, 30].

by rounding logistic regression coefficients after manual feature
selection, as recommended by the U.S. Department of Justice [30]).
These approaches may produce risk scores with poor rank-accuracy
or risk calibration (see e.g., the validated performance of CHADS;
in [22], and heuristic risk scores in [8]).

In this paper, we present a principled approach to learn risk
scores by solving a mixed-integer nonlinear program (MINLP) that
we call the risk score problem. We consider an exact formulation that
minimizes the logistic loss for rank accuracy and risk calibration,
penalizes the £p-norm for sparsity, and uses discrete variables to
restrict coefficients to small integers and enforce operational con-
straints. We refer to the risk score obtained by solving this problem
as a Risk-calibrated Supersparse Linear Integer Model (RiskSLIM).

Our proposed approach is unique in that it can fit models that are
fully optimized for feature selection and small integer coefficients.
In addition, it allows users to easily address operational constraints
without parameter tuning or post-processing, by directly includ-
ing these constraints in the MINLP formulation. In light of these
benefits, a major goal is to recover the optimal solution to the risk
score problem and pair this solution with a certificate of optimality.
By design, the optimal solution to the risk score problem attains
the best performance among all models that satisfy our constraints.
By solving this problem to optimality, we therefore end up with
a risk score with acceptable performance, or a risk score with un-
acceptable performance along with a certificate proving that the
constraints were overly restrictive.

As we show, solving the risk score problem with an off-the-
shelf MINLP solver is time-consuming even on small datasets, as
algorithms for generic MINLPs are slowed down by excessive data-
related computation in this case. Accordingly, we solve the risk
score problem with a cutting plane algorithm, which reduces data-
related computation by iteratively solving a surrogate problem with
a linear approximation of the loss that is much cheaper to eval-
uate. Cutting plane algorithms have an impressive track record
on large-scale learning problems [see 10, 16, 29], as they scale lin-
early with the number of samples and provide precise control over
data-related computation. Unfortunately, previous algorithms were
designed under the assumption that the surrogate can be solved to
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optimality at each iteration. While this is perfectly reasonable in
a convex setting, it leads cutting plane algorithms to stall on non-
convex problems, as the time to optimize the surrogate increases
exponentially with each iteration. We demonstrate this stalling
phenomenon, and present a cutting plane algorithm to overcome
this issue, called the lattice cutting plane algorithm. The resulting
approach allows us to learn optimized risk scores in a way that
scales linearly in the number of samples, provides a certificate of
optimality, and accommodates non-trivial operational constraints
that are often crucial for deployment.

Related Work. Our work is broadly related to new methods for
interpretable machine learning [see e.g. 5, 15, 21, 22, 32, 36]. Inter-
pretability has become crucial for models in high-stakes applica-
tions [19], as evidenced by new EU regulations that require a “right
to an explanation” from algorithmic decision-making tools [14].

We focus on the simple risk assessment models such as those con-
sidered by Ertekin and Rudin [9, which uses a Bayesian approach]
and Jung et al. [17, which combines stepwise regression, scaling,
and rounding]. This class of models generalizes boolean risk models
[e.g. 35] when we use binary features and restrict coefficients to
A;j € {0,1}. In contrast to these approaches, we use an optimization-
based approach that can consistently recover a globally optimal
solution, provide a certificate of optimality, address operational
constraints, and scale seamlessly in the number of samples.

RiskSLIM models are similar to SLIM models [28, 32, 34, 36] in
that the score functions are fully optimized for feature selection,
small integer coefficients and operational constraints. However,
RiskSLIM models are designed for risk assessment and optimize
the logistic loss. In contrast, SLIM models are designed for decision-
making and optimize the 0-1 loss. Optimizing the 0-1 loss results in
models that are optimized for accuracy, meaning that SLIM models
will not necessarily have high AUC if used for ranking. Optimizing
the 0-1 loss is also NP-hard, so training SLIM may be challenging
for datasets with large sample sizes. In practice, RiskSLIM is better-
suited for problems where: (i) users need calibrated probability
estimates; (ii) the sample size is large; (iii) users need a model that
performs well at several operating points across the ROC curve (e.g.
when users want to adjust their decision point on-the-fly).

We solve the risk score problem with a cutting plane algorithm.
Such algorithms have been extensively studied by the optimization
community [see 3, 18]. Our algorithm uses callbacks in modern MIP
solvers to build a cutting plane approximation while performing a
branch-and-bound search. It differs from existing algorithms [10, 16,
29] in that it does not stall in settings with non-convex regularizers
and constraints. Our algorithm may be used to solve other problems
with non-convex penalties and constraints, such as {y-regularized
risk minimization [27], or discrete linear classification problems
that minimize a convex loss over a small integers [4, 7, 24, 35].

Software and Additional Resources. We provide software to learn
optimized risk scores at http://github.com/ustunb/risk-slim. We
provide additional details in the full version of this paper [33], which
includes new empirical results as well as techniques to improve
LCPA by generating feasible solutions, narrowing the optimality
gap, and reducing data-related computation. In addition to the
seizure prediction application in Section 5, RIskSLIM has also been
used to create a screening tool to diagnose adult ADHD [31].
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2 PROBLEM STATEMENT

We define the risk score problem as follows. We start with a set of
training examples {(x;, yl')}ﬁ\il where x; = [1,xj1...x;4]"7 C RA+1
is a feature vector and y; € {—1, +1} is a class label. We consider
a score function (A, x) where A € RZ*! is a coefficient vector
[A0, A1, ... ,)Ld]T and Ay is the intercept. We model the predicted
risk that example i belongs to the positive class as:
1

1+ exp(—(A, x;))
In this setup, A; represents the points for feature j. Given features
x;, users tally the points to obtain a score s; = (A, x;), and use the
score s; to estimate predicted risk.

We learn the values of the coefficients from data, by solving a
MINLP that we call the risk score problem or RiskSLIMMINLP:

1(A) + Col1Allg

pi =Pr(yi =+1|x;) =

min
A (1)

s.t. Ae L.

RiskSLIMMINLP minimizes the logistic loss [(A) = % Zf\il log(1 +
exp(—(A, yix;))) to achieve high AUC and risk calibration, and pe-
nalizes the £y-norm ||A||, = Z;i:l 1[A; # 0] for sparsity. The trade-
off parameter Cy controls the trade-off between loss and sparsity,
and represents the maximum log-likelihood sacrificed to remove a
feature from the optimal model. The feasible region restricts coeffi-
cients to a set of small integers suchas £ = {-5,.. ., 5}d+1, and may
be further customized to include application-specific operational
constraints such as those in Table 1.

Constraint Type Example

Feature Selection Choose up to 10 features

Group Sparsity Include either Male or Female, not both

Optimal Thresholding ~ Use at most 3 thresholds for Age: 21001 1[Age < k] <3

k=

Logical Structure If Male is in model, then also include Hypertension

Predict Pr (y = +1|x) > 0.90 when Male = TRUE

Side Information

Table 1: Operational constraints that can be added to the fea-
sible region of the risk score problem (1).

RiskSLIMMINLP aims to capture the exact objectives and con-
straints of risk scores, so that its optimizer attains the minimum
logistic loss among feasible models on the training data (provided
that Cp is small enough). In Section 4, we show that models that
minimize the logistic loss achieve high AUC and risk calibration
on training data, and that this generalizes to test data due to the
simplicity of our hypothesis space. There is some theory to ex-
plain these results. Specifically, the logistic loss is strictly proper,
meaning it yields calibrated estimates of predicted risk under the
parametric assumption that the true risk can be modeled with the
logistic function [26]. In addition, Kotlowski et al. [20] show that a
“balanced” logistic loss is a lower bound on 1-AUC, which means
that minimizing the logistic loss maximizes a surrogate of AUC.

Using an exact formulation provides an alternative way to set
the trade-off parameter Cy:

e If we are given a limit on the model size (e.g. || ]|y < k), we can
add this as a constraint in the formulation and set Cy to a small
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value (e.g. Co = 1078). In this case, the optimal solution corre-
sponds to the best model that obeys the model size constraint,
provided Cy is small enough [see 33, for a proof].

e Alternatively, we can choose the model size based on cross-
validated (CV) performance. In this case, we would repeat the
previous process for ||A||g < k for k = 1...d. This lets us fit the
full range of risk scores (i.e. the full {y-regularization path) by
solving at most d instances of RiskSLIMMINLP. In comparison,
a standard CV-based approach (i.e. where we treat Cy as the hy-
perparameter) is likely to require solving more than d instances
as one cannot determine d values of Cy to return the full range
of risk scores a priori.

Optimizing RiskSLIMMINLP is a difficult computational task
given that {y-regularization, minimizing over integers, and MINLP
problems are all NP-hard [2]. These worst-case complexity results
mean that finding an optimal solution to RiskSLIMMINLP may be
intractable for high dimensional datasets. As we show, however,
RiskSLIMMINLP can be solved to optimality for many real-world
datasets in minutes, and in a way that scales linearly in N.

Notation and Terminology. We denote the set of feasible values
for Ajas L = {A}“in, ..., AT**} c Z. We denote the objective of
RiskSLIMMINLP as V (1) = I(A) + Cy ||A||, and an optimal solution
as A* € argminy ¢ » V(A). We bound the optimal value as V (1*) €
[vmin ymax] and define the optimality gap as 1 — (V™inymaxy,

Solving RiskSLIMMINLP to optimality means that we have found
a solution with an optimality gap of 0.0%. This implies that we have:
(i) found the best integer feasible solution to RiskSLIMMINLP; and
(ii) paired the solution with a lower bound V™" = V (1*).

We make two following assumptions for clarity of exposition: (i)
0 € L, which ensures that RiskSLIMMINLP is always feasible; (ii)
the intercept is not regularized, which means the precise version of
the RiskSLIMMINLP objective is V (A1) = I[(A) + Co ”/1[1’01]“0 where
A = [A0, Ap,q7)-

3 METHODOLOGY

In Algorithm 1, we present a simple cutting plane algorithm that
we refer to as CPA. In what follows, we use CPA to discuss the
benefits of cutting plane algorithms, and to explain why existing
algorithms stall in non-convex settings. We then present a new
cutting plane algorithm that does not stall in non-convex settings,
and compare the performance of the cutting-plane algorithms with
an off-the-shelf MINLP solver in Figure 5.

CPA recovers the optimal solution to RiskSLIMMINLP by solving
a mixed-integer programming (MIP) surrogate problem where the
loss function [(A) is approximated by cutting planes. A cutting plane
or cut is a supporting hyperplane to the loss at a point A’ € £:

QALY + (VIQAT), A = AD).
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Algorithm 1 Cutting Plane Algorithm (CPA)

Input
(xi, yi)l{il training data
L constraint set
Co £y penalty parameter
£SOP ¢ [0, 1] optimality gap of acceptable solution
Initialize
k<0 number of cuts
o) « {0} cutting-plane approximation of loss function
(v ymax) (0, co) bounds on the optimal value
£ o0 optimality gap
1: while ¢ > £5°P do .
2: (6%, Ak  provably optimal solution to RiskStmMIP(I¥ (-))
3: compute cut parameters [(AK) and VI(AK)
4 IFYQ) « max{Ik(A), I(AK) + (VI(AK), A - AKy) »update approximation VA
5: ymin gk 4 cilIAK >optimal value of RISkSLIMMIP is lower bound
6:  if V(AK) < V™MaX then
7: ymax . y (k) >update upper bound
8: Abest 3k >update best solution
9: end if .
10: £ « 1 — ymin ymax
11: ke—k+1
12: end while
Output: Abest e-optimal solution to Ri1skSLIMMINLP

RISKSL!MMIP(i (+)) is a MIP surrogate of RiskSLIMMINLP where the loss function /() is replaced
by the cutting-plane approximation [ (+):

min 6 + Co ||All

0,2

0>i) ()

Ael.

s.t.

Here, [(A!) € Ry and VI(A?) € RY are cut parameters that represent
the value and gradient of the loss at A’:

N
1 .
=+ ;logu + exp(—=(A yixi))).
1 N —YiX;j

vi@Ah) = — :
@) N~ 1+ exp(—(AL, yix;))

Cuts can be combined to produce a piecewise linear approximation
of the loss function as shown in Figure 2. We denote a cutting plane
approximation of the loss function built from k cuts as:

k) = max LAY + (VI(A!), A — A,
t=1...

(N

\//

Figure 2: A convex loss function /(1) and its cutting plane
approximation [%(A) built using cuts at the points A! and A2.

On iteration k, CPA solves the surrogate RISKSLIMMIP(ik (A))
whose objective contains the approximate loss [¥(1). CPA uses
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the optimizer of the surrogate (0%, AK) to: (i) improve I*(A) with
a new cut at A¥; (ii) compute bounds on the optimal value of
RiskSLIMMINLP to check convergence. The upper bound is set as
the objective value of the best solution from all iterations V™ =
ming_;_ g [(A?) + Col|A |lo. The lower bound is set as the optimal
value of the surrogate at the last iteration ymin _ jk (Ak) +CollA¥ o
CPA converges to an e-optimal solution of RiskSLIMMINLP in a
finite number of iterations [see 18, for a proof]. The cutting plane
approximation of a convex loss function improves with each cut:

fk(A) < **ma) < 1(A) forall A € £ and k,m € N.

Since the cuts at each iteration are not redundant, the lower bound
improves monotonically as CPA progresses. Once the optimality
gap ¢ is less than a stopping threshold £5°P, CPA terminates and
returns an ¢-optimal solution AP€St to RiskSLIMMINLP.

Key Benefits of Cutting-Plane Algorithms. CPA highlights two
major benefits of cutting plane algorithms for empirical risk min-
imization: (i) scalability in the sample size; (ii) control over data-
related computation. Since cutting plane algorithms only use the
training data to compute cut parameters, which can be achieved
using elementary matrix-vector operations in O(Nd) time at each
iteration, running time scales linearly in N for fixed d (see Figure
3). Moreover, since cut parameters are computed in an isolated step
(e.g. Step 3 in Algorithm 1), users can easily reduce data-related
computation by customizing their implementation to compute cut
parameters more efficiently (e.g. via parallelization).

CPA also highlights a unique benefit of cutting plane algorithms
in our setting. Specifically, it recovers the optimal solution to the
non-linear problem RiskSLIMMINLP by iteratively solving a lin-
earized surrogate RisSkSLIMMIP. In practice, this allows us to fit risk
scores with a MIP solver instead of a MINLP solver. As shown
in Figure 5, this can substantially improve our ability to solve
RiskSLIMMINLP since MIP solvers typically exhibit better off-the-
shelf performance than MINLP solvers (as MIP solvers have better
implementations of branch-and-bound, and MINLP solvers are de-
signed to handle a far more diverse set of optimization problems).

1000 Total Time

500
Time

Spent on
Data-Related
Computation

200

100 .
Solver Time

Runtime (seconds)

o
o

Figure 3: CPA runtime (log-scale) for simulated datasets
with d = 10 and N € [10%,108]. As N increases, total run-
ning time scales at O(N), which reflects the time to compute
cut parameters. Solver time remains roughly constant.
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Stalling in Non-Convex Settings. Cutting plane algorithms for
empirical risk minimization [10, 16, 29] are similar to CPA in that
they solve a surrogate problem at each iteration (i.e., on Step 5 of
Algorithm 1). When these algorithms are applied to problems with
non-convex regularizers or constraints, the surrogate problems are
non-convex and may require an unreasonable amount of time to
solve to optimality (especially on on higher-dimensional problems).
In practice, this prevents the algorithm from improving the cutting-
plane approximation and computing a valid lower bound. We refer
to this behavior as stalling.

There is no easy fix to prevent cutting plane algorithms such
as CPA from stalling in non-convex settings. This is because they
need a provably optimal solution at each iteration to compute a
valid lower bound (i.e., a solution with an optimality gap of 0.0%).
If, for example, CPA only solved RiskSLIMMIP until it found a
feasible solution with a non-zero optimality gap, the resulting lower
bound could exceed the true optimal value, leading the algorithm
to terminate early and return a suboptimal solution.

In Figure 4, we illustrate the stalling of CPA on a RiskSLIMMINLP
instance where d = 20 (in black). As shown, the time to solve
RiskSLIMMIP increases exponentially with each iteration and CPA
stalls on iteration k = 87 as it attempts to optimize the surrogate
MIP. In this case, the best feasible solution that we recover after
6 hours has a large optimality gap as well as a highly suboptimal
loss (which makes sense as the solution optimizes a cutting-plane
approximation that uses at most 86 cuts). Given that the value of
the loss is closely related to the performance of the model, this
means that the risk score we obtain after 6 hours performs poorly.

100%
80%
60%

40%

Optimality Gap

20%

0%
100 1000
Cuts Added

10000

10000

1000

100

Seconds/Cut

10 100 1000

Cuts Added

10000

Figure 4: CPA (black) and LCPA (red) on a simulated dataset
with d = 20 and N = 50,000. We show the optimality gap
(top) and the time to add a new cut (bottom; log-scale) over
6 hours. CPA stalls after adding 86 cuts as the time to op-
timize R1skSLIMMIP increases exponentially. The resulting
solution corresponds to a risk score with poor performance.
In contrast, LCPA does not stall, finding a near-optimal solu-
tion in 9 minutes, and the optimal solution in 234 minutes.
LCPA uses the remaining time to reduce the optimality gap.
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3.1 Lattice Cutting Plane Algorithm

In order to avoid the stalling behavior of existing cutting-plane
algorithms in non-convex settings, we solve the risk score problem
using the lattice cutting plane algorithm (LCPA; Algorithm 2).

LCPA is a cutting-plane algorithm that recovers the optimal so-
lution to RiskSLIMMINLP via branch-and-bound (B&B) search. The
search recursively splits the feasible region of RiskSLIMMINLP into
disjoint partitions, discarding partitions that are infeasible or prov-
ably suboptimal. LCPA solves a surrogate linear program (LP) over
each partition. In this approach, the cutting-plane approximation
is updated whenever the surrogate LP yields an integer feasible
solution. The lower bound is set as the smallest possible value of
the surrogate LP over the remaining search region.

As shown in Figure 4, LCPA (in red) does not stall. This is because
— unlike CPA — LCPA does not need to optimize a non-convex
surrogate to add cuts and compute a valid lower bound. Even so,
LCPA retains the key benefits of CPA such as: scalability in the
sample size, control over data-related computation, and the ability
to use a MIP solver.

In what follows, we describe the main elements of LCPA:

B&B Search. In Algorithm 2, we represent the state of the B&B
search using a B&B tree. This tree is composed of nodes (i.e. leaves)
in the node set N. Each node (P, vn) € N consists of a partition
of the convex hull of constraint set #,, C conv (L), and a lower
bound for the optimal value of the surrogate over this partition, vp,.

Each iteration of LCPA starts by removing a node (#, vy) from
the node set N and solving the surrogate over $,,. The next steps
depend on the feasibility of RISKSLIMLP(ik (), Pn):

o If RiskSuMLP (% (), Pp,) yields an integer solution A¥ € £,
LCPA updates the cutting plane approximation I*(-) with a cut
at AP in Step 8.

o If RiskSLIMLP (K (), Pp) yields a continuous solution A'¥ ¢ £,
then LCPA splits the partition $, into disjoint subsets $’ and
P’’. Bach subset is paired with the optimal value of the surrogate
LP to yield the child nodes (P, o) and (P”,v'7). The child
nodes are added back into AV in Step 18.

o If RISKSLIMLP(ik (+), Pp) is infeasible, the node is discarded.

The search uses rules that are provided by a MIP solver:

e RemoveNode, which takes as input the node set N and outputs
anode (Pp, vn) (e.g., the node with the smallest v,).

e SplitPartition, which takes as input a partition #p, and the cur-
rent solution AY and outputs disjoint partitions that do not
cover Pp, (e.g. split on a fractional component of the solution
/IJL.P, which returns P’ = {1 € Prp| A}P > M]L.P]} and P =
{A e Prp IA}“P < M}‘P1 }). The output conditions ensure that: (i)
the partitions of all nodes in the node set remain disjoint; (ii) the
search region shrinks even if the solution to the surrogate is not
integer feasible; (iii) the number of nodes is finite.

Convergence. LCPA checks convergence using bounds on the
optimal value of RiSkSLIMMINLP. The upper bound V™2 is set as
the objective value of the best integer feasible solution in Step 11.
The lower bound V™" s set as the smallest lower bound among
all nodes in Step 20. This quantity is a lower bound on the optimal
value of the surrogate over the remaining search region | J,, Pn;
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that is, the optimal value of RiskSLiMLP (% (), U, Pp). Thus, ymin
improves when we add cuts or reduce the remaining search region.

Each iteration of LCPA reduces the remaining search region as it
either finds an integer feasible solution, identifies an infeasible parti-
tion, or splits a partition into disjoint subsets. Thus, V™™ increases
monotonically as the search region becomes smaller, and cuts are
added at integer feasible solutions. Likewise, V™ decreases mono-
tonically as the search is guaranteed to find the optimal solution.
Since there are a finite number of nodes, LCPA terminates after a
finite number of iterations.

Implementation. We implement LCPA using a MIP solver that
provides control callbacks, such as CPLEX. The solver handles all
B&B related steps in Algorithm 2 and control callbacks let update
the cutting-plane approximation by intervening in the search. In a
basic implementation, we use a control callback to intervene when
Algorirthm 2 reaches Step 6. Our code retrieves the integer feasible
solution, computes the cut parameters, adds a cut, and returns
control back to solver by Step 9.

Algorithm 2 Lattice Cutting Plane Algorithm (LCPA)

Input

(xi, yi)l{il training data
L constraint set for RiskSLIMMINLP
Co £y penalty parameter
£SOP ¢ [0, 1] optimality gap of acceptable solution
RemoveNode rule to pick a node from a node set (provided by MIP solver)

SplitPartition rule to split a partition into disjoint subsets (provided by MIP solver)

Initialize
k0 number of cuts
0 (A) « {0} cutting-plane approximation of loss function
(Vmin ymaxy (0, co) bounds on the optimal value
£ optimality gap

Py « conv (L)
vy « ymin

N « {(Po, vo)}

partition for initial node

lower bound for initial node
initial node set

1: while £ > £5°P do

2: (Pn, vn) < RemoveNode (N) > is index of removed node
3: solve RISKSLIMLP(lk(-), Pn)

4: AP coefficients from optimal solution to RISKSLIMLP(lk(*), Pn)

5: WP optimal value of RiskSLIMLP (1K (1), Py,)

6: if optimal solution is integer feasible then

7: compute cut parameters [(ALF) and VI(ALP)

8: %+ (A) « max{i% (A), [AMP) + (VI(AK), A = ALPY) > update approximation VA
9: if o1F < VM3 then

10: ymax o LP >update lower bound
11: Abest . HLP >update best solution
12: N — N\ {(Ps, vs) | vs > VXY > prune suboptimal nodes
13: end if

14: ke—k+1

15: else if optimal solution is not integer feasible then

16: (P’, P”) « SplitPartition(Pp, ALP) >’ P are disjoint subsets of Pry
17: (v, v") « (P, oL > oLP is lower bound for ', P
18: N « NU{(P, ), (P, 0")) >add child nodes to N
19: end if
20: VMR — miny v > lower bound is smallest lower bound among nodes in N'
21: £« 1 - ymn jymax >update optimality gap

22: end while

best

Output: e-optimal solution to RiskSLIMMINLP

RiskSLMLP({ (+), P) is a LP relaxation of RiskSLIMMIP(] (+)) over the partition P C conv (L):

d
9+CgZaJ-
j=1
Ae®P
6 >1i(A)

min
0,1, x

s.t. (4)

aj = max(A;j, 0)/A;.nax + min(A;, 0)/A;m" forj=1...d.
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| LCPA
) 5x10° .
<1 min
1x10° .
Time to Fit a Good Risk Score <10 min 5105
i.e., the time until an algorithm finds a solution whose N "
loss is within 10% of the optimal loss. This reflects the <1 hour 1x10°
time for an algorithm to return a risk score with good
. . . . . . <6 hours 5x10°
risk calibration and AUC without a proof of optimality.
. 6+ hours 1x10°
5 10 15 20 25 30 5 10

0%
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Figure 5: Performance of LCPA, CPA, and a commercial MINLP solver (Artelsys Knitro) on hard instances of RIskSLIMMINLP
for simulated datasets [details in 33]. MINLP fails to produce good risk scores on instances with large d or N as it struggles
with data-related computation. CPA and LCPA scale linearly in N when d is fixed: if they solve an instance for a given d, then
they also solve instances for larger N in O(N) additional time. CPA stalls when d > 15 and returns low-quality risk scores
when d > 20. In contrast, LCPA does not stall, and recovers a good model in all cases.

4 BENCHMARKING

Datasets. We used 6 datasets shown in Table 2. We selected
these datasets so as to vary the size and types of variables (adult,
mammo, mushroom, spambase), and to illustrate potential applications
of risk scores (arrest, bank). All datasets are available at the UCI
Repository [23], other than arrest, which can be requested from
ICPSR. We processed each dataset by binarizing all categorical
features and some real-valued features. For reproducibility, we
include all processed UCI datasets at github.com/ustunb/risk-slim
[see 36, for code to process arrest].

Methods. For each dataset, we fit a risk score with integer coeffi-
cients A; € [-5,5] and model size ||A||, < 5 to match the form of
models used in practice [e.g., 12]. We use the following methods:
RiskSLIM: We formulate an instance of RiskSLIMMINLP where:
Ay € {-100,...,100}; A; € {-5,...,5}; and |[A]|; < 5. We set
Cy to a small value (1078) to recover the best model under these
constraints [33]. We solve each instance using LCPA along with
the improvements in [33]. We use CPLEX 12.6.3 on a 3.33 GHz
CPU with 16 GB RAM and cap runtime to 20 minutes.

PLR (Penalized Logistic Regression): We use the glmnet package
[11] to fit logistic regression models with a combined ¢; + {5
penalty. We add constraints to bound A; € [-5, 5], and fit mod-
els for 1,100 free parameter instances: 11 values of the mixing
parameter {0.0,0.1,...,1.0} X 100 values of the regularization
penalty (chosen by glmnet). These free parameters mean that
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PLR also covers the following variants of logistic regression as
special cases: standard logistic regression (no penalty); Lasso
(pure ¢1-penalty); and Ridge (pure £2-penalty).

Rp (Naive Rounding): We fit a pool of models with PLR. For each
model in the pool, we round each coefficient to the nearest integer
in {-5,...,5} by setting A; < [min(max()t~, -5), S)J. We round
the intercept to the nearest integer by setting A9 « [Ao].

RsRD (Rescaled Rounding): We fit a pool of models with PLR.
For each model in the pool, we rescale coefficients so that the
largest coefficient is +5, then round to the nearest integer (i.e.
Aj— [y/ljJ where y = 5/ max; |4;]). Rescaling aims to prevent
rounding coefficients to zero when |4;| < 0.5 for many j.

Metrics. We evaluate all models in terms of risk-calibration (mea-
sured by CAL) and rank accuracy (measured by AUC). We use
reliability diagrams to see how the predicted risk matches the ob-
served risk at each score. We estimate the observed risk at each
score s as p(s) = m Dizs;=s 1 [yi = +1] and summarize cali-
bration over the full reliability diagram using the calibration error
CAL = /s Tis,=s (pi — P

Model Selection. We use nested 5-CV to set the parameters of
the final model and evaluate its predictive performance. The free

parameters of the final model reflect an instance that: (i) satisfies the
model size constraint; (ii) maximizes the 5-CV mean test AUC. We
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do not tune parameters for RIskSLIM since we include the model
size constraint in the coefficient set.

4.1 Results

Performance. As shown in Table 2, RiskSLIM models have the
best test CAL on 6/6 datasets and the best test AUC on 5/6 datasets.
In comparison, models built heuristically perform far worse in
terms of test CAL, and slightly worse in terms of test AUC. We
can explain these results by observing that: (i) models that attain
low values of the logistic loss have good risk calibration [see also
6]; (ii) as we are fitting from a simple class of models, risk scores
generalize well (i.e. test CAL/AUC is close to training CAL/AUC).
Since R1skSLIM models optimize the loss over exact constraints on
model form, they attain minimal or near-minimal values of the loss.
Thus, they perform well in terms of training CAL as per (i), and in
terms of test CAL as per (ii).

Computation. Although the risk score problem is NP-hard, we
fit RiskSLIM models with small optimality gaps in <20 minutes.
Our approach also has some practical benefits that are difficult to
measure. In particular, it can build and evaluate predictive per-
formance without the need for parameter tuning and nested CV,
meaning that we had to fit a total of 6 models. In comparison,
the baseline methods do require parameter tuning and nested CV,
which required training and processing over 33,000 models. Thus,
even as baseline methods are much faster to run for a single set of
parameters, it may take far longer to train these models depending
on the post-processing techniques that are used.

Optimality Gaps. R1skSLIM is the only method to pair models
with a measure of optimality. In practice, small optimality gaps are
valuable because they suggest we have fit the best model in our
model class. Thus, if a risk score with a small optimality gap per-
forms poorly, we can attribute the poor performance to a restrictive
model class and improve performance by considering models with
more terms or larger coefficients. In contrast, heuristic methods
do not provide such a guarantee, so when a risk score performs
poorly, we cannot tell if this is because the constraints are overly
restrictive or because we used an approach that cannot find the
best possible model.

Pitfalls and Best Practices for Heuristics. Our results show that
the performance of risk scores built heuristically can vary signifi-
cantly based on post-processing techniques, constraints on model
form, and the range of features. In some cases, risk scores built by
rounding coefficients perform well (e.g. Rb on bank). In others, per-
formance can falter (e.g. RD on spambase). In practice, performance
issues are often overlooked as common heuristics result in good
AUC but poor CAL [e.g. the rescaling in RsRp, used by 25, 30] and
summary statistics such as CAL and AUC conceal local issues over
the entire reliability diagram and ROC curve (see e.g. Figure 7). To
mitigate these issues, we recommend the following practices when
using or designing heuristics:

o Select models after rounding. If we selected a final model from the
pool of PLR models before rounding the coefficients, we could
greatly alter the loss and thus reduce performance. To mitigate
this risk, we first round the coefficients of all models in the pool,
and then select among the rounded models.
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o Avoid scaling. Rescaling coefficients may improve AUC but dras-
tically reduces CAL. This is because the logistic loss is not scale
invariant (see e.g. the reliability diagram for RsRp in Figure 7).
The decrease in CAL due to scaling is reflected by the much
higher values of the loss for RsRp in Table 2.

o Select models that optimize K-CV AUC instead of K-CV CAL. We
compared both procedures. Choosing a model that optimizes
the K-CV CAL leads to models with slightly better CAL but far
worse AUC. This is because trivial and near-trivial models have
low CAL on problems with class imbalance.

o Binarize real-valued features. When datasets contain real-valued
features (e.g. spambase), PLR may assign small coefficients to
features with large values. In such cases, rounding can greatly
impact performance by removing features such that |4;] < 0.5.
This issue is best addressed by binarizing: rescaling coefficients
before rounding affects calibration; normalizing reduces usability
as it requires users must also normalize when using the model.

These recommendations are for heuristics only. RiskSLIM does not

need them.

Dataset Metric PLR Rp RsRp  RiskSLIM
test cal 5.5% 43% 9.1% 2.6%
adult test auc 0.817 0.830 0.830 0.854
N =32561 model size 4 4 4 5
d =36 loss value 0.451 0.417 0.484 0.385
optimality gap - - - 9.7%
test cal 7.5% 5.7% 20.8% 1.7%
arrest test auc 0.700 0.691 0.691 0.697
N = 22530 model size 5 5 5 5
d=48 loss value 0.638 0.626 1.282 0.609
optimality gap - - - 4.0%
test cal 2.2% 1.4% 9.5% 1.3%
bank test auc 0.725 0.759 0.759 0.760
N =41188 model size 2 5 5 5
d=57 loss value 0.339 0.289 0.953 0.289
optimality gap - - - 3.5%
test cal 7.3% 8.1% 15.3% 5.0%
mammo test auc 0.845 0.845 0.845 0.843
N =961 model size 3 3 3 5
d=14 loss value 0.482 0.480 0.624 0.469
optimality gap - - - 0.0%
test cal 20.9% 12.3% 6.5% 1.8%
mushroom test auc 0.976 0.973 0.977 0.989
N =28124 model size 5 5 5 5
d=113 loss value 0.362 0.200 0.162 0.069
optimality gap - - - 0.0%
test cal 10.5%  24.2%  23.6% 11.7%
spambase testauc 0.823 0.908 0.862 0.928
N = 4601 model size 4 5 5 5
d =57 loss value 0.553  0.472  5.670 0.349
optimality gap - - - 27.8%

Table 2: Performance of risk scores with ||A||, < 5 and
Aj € {=5...5}). Here: test cal is the 5-CV mean test CAL; test
auc is the 5-CV mean test AUC; model size, loss value and
optimality gap pertain to the final model fit using the entire

dataset.
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1. Prior Arrests > 2 1 point
2. Prior Arrests > 5 1 point | +
arrest 3. Prior Arrests for Local Ordinance 1 point | +
testcal  17% 4. Age at Release between 18 to 24 1 point | +
train cal  2.6% 5. Age at Release > 40 -1 point | +

testauc 0.697
train auc 0.701

ADD POINTS FROM ROWS 1-5 SCORE

[SCORE | -1 [ o [ 1 [ 2 [ 3 [ 4 |
| RISK [ 11.9% | 269% | 500% | 73.1% | 88.1% | 953% |
1. Call between January and March 1 point
2. Called Previously 1 point | +
bank 3. Previous Call was Successful 1 point | +
testcal  13% 4. Employment Indicator < 5100 1 point | +
traincal 1.1% 5. 3 Month Euribor Rate > 100 -1 point | +
testauc  0.760 ADD POINTS FROM ROWS 1-5 SCORE | =
train auc 0.760
[SCORE | -1 [ o [ 1 [ 2 [ 3 4|

[ RISK [ 47% | 11.9% | 269% | 50.0% | 73.1% | 88.1% |

Figure 6: RiskSLIM models for arrest and bank. The arrest
model predicts the risk that a prisoner is arrested within 3
years of release. The bank model predicts the risk that a client
opens a bank account after a marketing call.

5 ICU SEIZURE PREDICTION

Seizure prediction in the ICU is a difficult problem. Current practice
is based on continuous electroencephalography (cEEG), which is a
technique to monitor electrical activity in the brain by means of
electrodes. Clinicians are trained to recognize a large set of cEEG
patterns, only some of which may be predictive. The characteristics
of cEEG patterns are then used to assess seizure risk, and to decide if
patients require a medical intervention, which may be dangerous, or
further monitoring, which is expensive. In what follows, we discuss
a collaboration with the Massachusetts General Hospital (MGH)
where we built a customized risk score to inform such decisions.

Dataset. We used a dataset of cEEG recordings from the Critical
Care EEG Monitoring Research Consortium. It contains N = 5427
patient records and d = 87 variables related to medical history,
secondary symptoms, and characteristics of 5 well-known cEEG
patterns: lateralized periodic discharges (LPD); lateralized rhythmic
delta (LRDA); generalized periodic discharges (GPD); generalized
rhythmic delta (GRDA); and bilateral periodic discharges (BiPD).
Here, y; = +1 if a patient in the ICU has a seizure in the next 24
hours. The problem is imbalanced with Pr (y; = +1) = 12.5%.

Model Requirements. Our collaborators at MGH wanted a model
that was risk-calibrated, sparse, aligned with domain knowledge,
and let clinicians make predictions without checking too many
cEEG patterns. To address these requirements, they specified sev-
eral operational constraints:

e Limited Model Size: The model had to use at most 4 variables so
that it would be easy to validate, and use in an ICU.

e Monotonicity: The model had to obey monotonicity constraints
for well-known risk factors (e.g. it could not suggest that prior
seizures reduce seizure risk).

o No Linear Dependencies: The model could not include linearly
dependent variables (e.g. it could not include Male and Female).

o Specific cEEG Patterns or Any cEEG Pattern: The dataset included
variables for specific cEEG patterns (e.g. MaxFrequencyLPD) and
any cEEG pattern (e.g. MaxFrequencyAnyPattern). The model had
to use variables for specific patterns or any pattern, not both.
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o Frequency in Continuous Encoding or Binary Encoding: The dataset
included two kinds of variables to measure the frequency of a
cEEG pattern: (i) a real-valued variable (e.g. MaxFrequencyLPD
€ [0, 3.0]); (ii) 7 binary variables (e.g. MaxFrequencyLPD < 0.5 Hz).
Models could use the real-valued variable or the binary variables.
To prevent clinicians from having to check multiple thresholds,
models had to use < 2 binary variables for each cEEG pattern.

Methods. We used the methods and metrics described in Section
4, which we adapted to address operational constraints as follows.
We fit a RiskSLIM model by solving RiskSLIMMINLP with the op-
erational constraints. This MINLP had 20 additional constraints, 2
additional variables, and was solved to optimality in < 20 minutes.
The baseline methods had built-in mechanisms for sign constraints
but needed tuning to handle the remaining constraints. We used
nested 5-CV and selected a final model that: (i) obeyed all opera-
tional constraints and (ii) maximized the mean 5-CV test AUC.

Results. Table 3 illustrates the performance benefits of an opti-
mization based approach in a constrained setting: the RiskSLIM
model] has a test CAL/AUC of 2.5%/0.801 while the best model from
the baseline methods has a test CAL/AUC of 3.7%/0.738.

As shown in Figure 7, models may have important differences
in risk calibration over the full reliability diagram. R1skSLIM risk
estimates are roughly monotonic and stable. Rp risk estimates are
unstable and non-monotonic. RsRD are skewed towards extreme
values as a result of scaling. As noted by our collaborators, the
non-monotonicity of Rp and RsRD is problematic as it suggests
patients with a score of 3.5 may have more seizures compared to
patients with a score of 4.0.

Figure 7 also highlights some of the usability benefits of linear
models with small integer coefficients. When input variables belong
to a small discrete set, scores also belong to a small discrete set.
This reduces the number of operating points on the ROC curve
and reliability diagram and makes it easy to pick an operating
point. When input variables are binary, risk scores have yet another
benefit in that the decision rule at each operating point is a boolean
function. For the RiskSLIM model, for example, the decision rule
predict §; = +1 if score > 2 is equivalent to the boolean function:

predict Seizure if AnyBriefRhythmicDischarge
V PatternsincludeLPD
V (AnyPriorSeizure A EpiletiformDischarge).

Small integer coefficients make it easy to extract such rules by
listing the conditions when the score exceeds the threshold. In
order to illustrate this, we show the score function of the PLR
model in Table 3 below.

score = — 2.35
+ 0.91 PatternsIncludeBiPD or LRDA or LPD
+ 0.03 AnyPriorSeizure.
+0.61 X MaxFrequencyLPD

In this case, it is much harder for users to extract a boolean function
since the score function uses real-valued coefficients, and comput-
ing the score requires multiplication due to a non-binary feature,
MaxFrequencyLPD.
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Optimized Risk Score (RiskSLIM)

1. AnyBriefRhythmicDischarge 2 points
2. Patternsinclude LPD 2 points | +
3. AnyPriorSeizure 1point | +
4. Epiletiform or Discharge 1 point | +
ADD POINTS FROM ROWS 1-4 SCORE | =
[SCORE[ 0 [ 1 [ 2 [ 3 ] 4 [ 5 [ 6 |

[RISK [ 47% [ 11.9% | 26.9% | 50.0% | 73.1% | 88.1% | 95.3% |

100% 100%
o 80% 80%
c %
2 60% % 60%
= (5}
2 2
£ 40% D 40%
Q
s o
F 20% 20%
0% 0%
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

False Positive Rate Predicted Risk

{1 + {5 Penalized Logistic Regression + Rounding (Rp)

AnyPriorSeizure 1 point
PatternsInclude_BiPD_or_.LRDA_or_.LPD 1 point | +
MaxFrequencyLPD X 1 point per Hz | +
ADD POINTS FROM ROWS 1-3 SCORE | =

[SCORE] 00 ] 10 [ 20 [ 25 [ 30 [ 35 [ 40 [ 45 [ 50 |
[RISK [ 47% [ 11.9% | 26.9% [ 37.8% | 50.0% | 62.2% | 73.1% | 81.8% | 88.1% |

100% 100%
o 80% 80%
& i)
2 60% % 60%
B [
3 2
£ 40% o 40%
Q
S o
F 20% 20%
0% 0%
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

False Positive Rate Predicted Risk

€y + €, Penalized Logistic Regression + Scaling + Rounding (RsRp) ‘

1. AnyPriorSeizure 5 points
2. Patternsinclude_BiPD_or-LRDA_or-LPD 1 point
3. MaxFrequencyLPD 5 points per Hz

ADD POINTS FROM ROWS 1-3 SCORE | =

+ +

[SCORE [0to10 [ 12,5 150 [ 20.0 [ 20t0 25 |
[RISK [ <5.0% | 7.6% | 50.0% | 92.4% | > 95.0% |

100% 100%

80% 80%
60% 60%

40% 40%

True Positive Rate
Observed Risk

20% 20%

0% 0%
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%
False Positive Rate Predicted Risk

Figure 7: Risk scores, ROC curves, and reliability diagrams
for RiskSLIM, Rp and RsRp. We show the final model on train-
ing data in black, and fold-based models on test data in grey.
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OBJECTIVE CONSTRAINTS OTHER INFORMATION

Method Test Test Model Instances % Feasible Loss Opt. Train Train

CAL AUC  Size Trained Instances Value Gap CAL AUC

RiskSLIM 25% 0.801 4 1 100% 0.293 0.0% 2.0% 0.806
1.9-34% 0.758 - 0.841

PLR 4.5% 0.731 2 1100 0% 0326 - 39% 0.731
3.4-6.6% 0.712-0.772

Rp 3.7% 0.738 3 1100 12% 0313 - 19% 0.767
2.9-5.0% 0.712-0.805

RsRp 11.5% 0.738 3 1100 11% 1.003 - 10.3% 0.767

10.7 - 12.7% 0.712 - 0.805

Table 3: Performance of models built with the methods in
Section 4. We show the 5-CV mean test CAL/AUC (top) and
the 5-CV min-max (bottom). An instance is a unique combi-
nation of free parameters for a given method.

6 DISCUSSION

Our goal in this paper was to develop a principled approach to
learn simple risk scores from data. To this end, we formulated an
exact optimization problem to fit risk scores that were optimized
for feature selection, small integer coefficients, and operational
constraints. We then solved this problem with a new cutting plane
algorithm that does not stall in non-convex settings and whose
running time scales linearly with the number of samples in a dataset.

As we showed, our approach resulted in risk scores with im-
proved risk-calibration and AUC - especially in constrained set-
tings. In addition, it had practical benefits in that: (i) it can address
operational constraints without parameter tuning, which greatly
reduces the number of models needed to build and evaluate a risk
score; (ii) it pairs models with an optimality gap to determine if
poor performance is due to the model class or the fitting process.

Interesting directions for future work include extending our
approach to build risk scores with various kinds of operational
constraints (e.g. fairness constraints), and using LCPA to fit other
kinds of supervised learning models with non-convex regularizers
or constraints.
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