
Optimized Risk Scores
Berk Ustun

Massachuse�s Institute of Technology

Cambridge, MA, USA

ustunb@mit.edu

Cynthia Rudin

Duke University

Durham, NC, USA

cynthia@cs.duke.edu

ABSTRACT

Risk scores are simple classi�cation models that let users quickly

assess risk by adding, subtracting, and multiplying a few small num-

bers. Such models are widely used in healthcare and criminal justice,

but are o�en built ad hoc. In this paper, we present a principled

approach to learn risk scores that are fully optimized for feature

selection, integer coe�cients, and operational constraints. We for-

mulate the risk score problem as a mixed integer nonlinear program,

and present a new cu�ing plane algorithm to e�ciently recover its

optimal solution. Our approach can �t optimized risk scores in a

way that scales linearly with the sample size of a dataset, provides

a proof of optimality, and obeys complex constraints without pa-

rameter tuning. We illustrate these bene�ts through an extensive

set of numerical experiments, and an application where we build a

customized risk score for ICU seizure prediction.

KEYWORDS

classi�cation; cu�ing plane methods; mixed integer non-linear

programming; risk scores; interpretable models; seizure prediction

1 INTRODUCTION

Risk scores are simple linear classi�cation models to assess risk by

adding, subtracting, and multiplying a few small numbers. �ese

models let users make quick predictions, without extensive training,

and without use of a computer.

Despite widespread use in medicine and criminal justice, there

has been no principled approach to learn risk scores from data. �is

is partly due to the challenging nature of the learning problem: risk

scores need to be rank-accurate (i.e., high AUC), risk-calibrated,

sparse, and use small integer coe�cients. In practice, domain ex-

perts may also require risk scores to satisfy operational constraints

before they can be deployed, such as limits on model size (“use at

most 5 features”), feature composition (“if the model uses Hyperten-

sion, then it should also use Age ≥ 75”), and prediction (“predicted

risk should be lower for males than females”).

�e extensive set of requirements is best illustrated by the fact

that many existing models used in practice are built ad hoc [see

e.g., 1]. Existing models are built by a panel of experts (e.g., the

CHADS2 score in Figure 1) or by combining multiple heuristics (e.g.,

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior speci�c permission

and/or a fee. Request permissions from permissions@acm.org.

KDD’17, August 13–17, 2017, Halifax, NS, Canada.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-4887-4/17/08. . . $15.00

DOI: h�p://dx.doi.org/10.1145/3097983.3098161

1. Congestive Heart Failure 1 point · · ·

2. Hypertension 1 point + · · ·

3. Age ≥ 75 1 point + · · ·

4. Diabetes Mellitus 1 point + · · ·

5. Prior Stroke or Transient Ischemic A�ack 2 points + · · ·

ADD POINTS FROM ROWS 1–5 SCORE = · · ·

SCORE 0 1 2 3 4 5 6

STROKE RISK 1.9% 2.8% 4.0% 5.9% 8.5% 12.5% 18.2%

Figure 1: CHADS2 score to assess stroke risk [12]. Such

models are widely used for risk assessment in medicine (see

www.mdcalc.com) and criminal justice [8, 13, 25, 30].

by rounding logistic regression coe�cients a�er manual feature

selection, as recommended by the U.S. Department of Justice [30]).

�ese approaches may produce risk scores with poor rank-accuracy

or risk calibration (see e.g., the validated performance of CHADS2

in [22], and heuristic risk scores in [8]).

In this paper, we present a principled approach to learn risk

scores by solving a mixed-integer nonlinear program (MINLP) that

we call the risk score problem. We consider an exact formulation that

minimizes the logistic loss for rank accuracy and risk calibration,

penalizes the `0-norm for sparsity, and uses discrete variables to

restrict coe�cients to small integers and enforce operational con-

straints. We refer to the risk score obtained by solving this problem

as a Risk-calibrated Supersparse Linear Integer Model (RiskSLIM).

Our proposed approach is unique in that it can �t models that are

fully optimized for feature selection and small integer coe�cients.

In addition, it allows users to easily address operational constraints

without parameter tuning or post-processing, by directly includ-

ing these constraints in the MINLP formulation. In light of these

bene�ts, a major goal is to recover the optimal solution to the risk

score problem and pair this solution with a certi�cate of optimality.

By design, the optimal solution to the risk score problem a�ains

the best performance among all models that satisfy our constraints.

By solving this problem to optimality, we therefore end up with

a risk score with acceptable performance, or a risk score with un-

acceptable performance along with a certi�cate proving that the

constraints were overly restrictive.

As we show, solving the risk score problem with an o�-the-

shelf MINLP solver is time-consuming even on small datasets, as

algorithms for generic MINLPs are slowed down by excessive data-

related computation in this case. Accordingly, we solve the risk

score problem with a cu�ing plane algorithm, which reduces data-

related computation by iteratively solving a surrogate problem with

a linear approximation of the loss that is much cheaper to eval-

uate. Cu�ing plane algorithms have an impressive track record

on large-scale learning problems [see 10, 16, 29], as they scale lin-

early with the number of samples and provide precise control over

data-related computation. Unfortunately, previous algorithms were

designed under the assumption that the surrogate can be solved to

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1125

www.mdcalc.com

optimality at each iteration. While this is perfectly reasonable in

a convex se�ing, it leads cu�ing plane algorithms to stall on non-

convex problems, as the time to optimize the surrogate increases

exponentially with each iteration. We demonstrate this stalling

phenomenon, and present a cu�ing plane algorithm to overcome

this issue, called the la�ice cu�ing plane algorithm. �e resulting

approach allows us to learn optimized risk scores in a way that

scales linearly in the number of samples, provides a certi�cate of

optimality, and accommodates non-trivial operational constraints

that are o�en crucial for deployment.

Related Work. Our work is broadly related to new methods for

interpretable machine learning [see e.g. 5, 15, 21, 22, 32, 36]. Inter-

pretability has become crucial for models in high-stakes applica-

tions [19], as evidenced by new EU regulations that require a “right

to an explanation” from algorithmic decision-making tools [14].

We focus on the simple risk assessment models such as those con-

sidered by Ertekin and Rudin [9, which uses a Bayesian approach]

and Jung et al. [17, which combines stepwise regression, scaling,

and rounding]. �is class of models generalizes boolean risk models

[e.g. 35] when we use binary features and restrict coe�cients to

λj ∈ {0, 1}. In contrast to these approaches, we use an optimization-

based approach that can consistently recover a globally optimal

solution, provide a certi�cate of optimality, address operational

constraints, and scale seamlessly in the number of samples.

RiskSLIM models are similar to SLIM models [28, 32, 34, 36] in

that the score functions are fully optimized for feature selection,

small integer coe�cients and operational constraints. However,

RiskSLIM models are designed for risk assessment and optimize

the logistic loss. In contrast, SLIM models are designed for decision-

making and optimize the 0–1 loss. Optimizing the 0–1 loss results in

models that are optimized for accuracy, meaning that SLIM models

will not necessarily have high AUC if used for ranking. Optimizing

the 0–1 loss is also NP-hard, so training SLIM may be challenging

for datasets with large sample sizes. In practice, RiskSLIM is be�er-

suited for problems where: (i) users need calibrated probability

estimates; (ii) the sample size is large; (iii) users need a model that

performs well at several operating points across the ROC curve (e.g.

when users want to adjust their decision point on-the-�y).

We solve the risk score problem with a cu�ing plane algorithm.

Such algorithms have been extensively studied by the optimization

community [see 3, 18]. Our algorithm uses callbacks in modern MIP

solvers to build a cu�ing plane approximation while performing a

branch-and-bound search. It di�ers from existing algorithms [10, 16,

29] in that it does not stall in se�ings with non-convex regularizers

and constraints. Our algorithm may be used to solve other problems

with non-convex penalties and constraints, such as `0-regularized

risk minimization [27], or discrete linear classi�cation problems

that minimize a convex loss over a small integers [4, 7, 24, 35].

So�ware and Additional Resources. We provide so�ware to learn

optimized risk scores at h�p://github.com/ustunb/risk-slim. We

provide additional details in the full version of this paper [33], which

includes new empirical results as well as techniques to improve

LCPA by generating feasible solutions, narrowing the optimality

gap, and reducing data-related computation. In addition to the

seizure prediction application in Section 5, RiskSLIM has also been

used to create a screening tool to diagnose adult ADHD [31].

2 PROBLEM STATEMENT

We de�ne the risk score problem as follows. We start with a set of

training examples {(xi ,yi)}Ni=1
where xi = [1,xi1 . . . xid]

> ⊆ Rd+1

is a feature vector and yi ∈ {−1,+1} is a class label. We consider

a score function 〈λ,x〉 where λ ⊆ Rd+1
is a coe�cient vector

[λ0, λ1, . . . , λd]
>

and λ0 is the intercept. We model the predicted

risk that example i belongs to the positive class as:

pi = Pr (yi = +1 | xi) =
1

1 + exp(−〈λ,xi 〉)
.

In this setup, λj represents the points for feature j. Given features

xi , users tally the points to obtain a score si = 〈λ,xi 〉, and use the

score si to estimate predicted risk.

We learn the values of the coe�cients from data, by solving a

MINLP that we call the risk score problem or RiskSlimMINLP:

min

λ
l (λ) +C0

λ

0

s.t. λ ∈ L.
(1)

RiskSlimMINLP minimizes the logistic loss l (λ) = 1

N
∑N
i=1

log(1 +
exp(−〈λ,yixi 〉)) to achieve high AUC and risk calibration, and pe-

nalizes the `0-norm

λ

0

=
∑d
j=1

1[λj , 0] for sparsity. �e trade-

o� parameter C0 controls the trade-o� between loss and sparsity,

and represents the maximum log-likelihood sacri�ced to remove a

feature from the optimal model. �e feasible region restricts coe�-

cients to a set of small integers such asL = {−5, . . . , 5}d+1
, and may

be further customized to include application-speci�c operational

constraints such as those in Table 1.

Constraint Type Example

Feature Selection Choose up to 10 features

Group Sparsity Include either Male or Female, not both

Optimal �resholding Use at most 3 thresholds for Age:

∑
100

k=1
1 [Age ≤ k] ≤ 3

Logical Structure If Male is in model, then also include Hypertension

Side Information Predict Pr (y = +1 |x) ≥ 0.90 when Male = TRUE

Table 1: Operational constraints that can be added to the fea-

sible region of the risk score problem (1).

RiskSlimMINLP aims to capture the exact objectives and con-

straints of risk scores, so that its optimizer a�ains the minimum

logistic loss among feasible models on the training data (provided

that C0 is small enough). In Section 4, we show that models that

minimize the logistic loss achieve high AUC and risk calibration

on training data, and that this generalizes to test data due to the

simplicity of our hypothesis space. �ere is some theory to ex-

plain these results. Speci�cally, the logistic loss is strictly proper,

meaning it yields calibrated estimates of predicted risk under the

parametric assumption that the true risk can be modeled with the

logistic function [26]. In addition, Kotlowski et al. [20] show that a

“balanced” logistic loss is a lower bound on 1-AUC, which means

that minimizing the logistic loss maximizes a surrogate of AUC.

Using an exact formulation provides an alternative way to set

the trade-o� parameter C0:

• If we are given a limit on the model size (e.g. ‖λ‖
0
≤ k), we can

add this as a constraint in the formulation and set C0 to a small

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1126

http://github.com/ustunb/risk-slim

value (e.g. C0 = 10
−8

). In this case, the optimal solution corre-

sponds to the best model that obeys the model size constraint,

provided C0 is small enough [see 33, for a proof].

• Alternatively, we can choose the model size based on cross-

validated (CV) performance. In this case, we would repeat the

previous process for ‖λ‖
0
≤ k for k = 1 . . .d . �is lets us �t the

full range of risk scores (i.e. the full `0-regularization path) by

solving at most d instances of RiskSlimMINLP. In comparison,

a standard CV-based approach (i.e. where we treat C0 as the hy-

perparameter) is likely to require solving more than d instances

as one cannot determine d values of C0 to return the full range

of risk scores a priori.

Optimizing RiskSlimMINLP is a di�cult computational task

given that `0-regularization, minimizing over integers, and MINLP

problems are all NP-hard [2]. �ese worst-case complexity results

mean that �nding an optimal solution to RiskSlimMINLP may be

intractable for high dimensional datasets. As we show, however,

RiskSlimMINLP can be solved to optimality for many real-world

datasets in minutes, and in a way that scales linearly in N .

Notation and Terminology. We denote the set of feasible values

for λj as Lj = {Λ
min

j , . . . ,Λ
max

j } ⊂ Z. We denote the objective of

RiskSlimMINLP as V (λ) = l (λ) +C0

λ

0

and an optimal solution

as λ∗ ∈ argminλ∈L V (λ). We bound the optimal value asV (λ∗) ∈

[Vmin,Vmax
], and de�ne the optimality gap as 1 − (Vmin/Vmax).

Solving RiskSlimMINLP to optimality means that we have found

a solution with an optimality gap of 0.0%. �is implies that we have:

(i) found the best integer feasible solution to RiskSlimMINLP; and

(ii) paired the solution with a lower bound Vmin = V (λ∗).
We make two following assumptions for clarity of exposition: (i)

0 ∈ L, which ensures that RiskSlimMINLP is always feasible; (ii)

the intercept is not regularized, which means the precise version of

the RiskSlimMINLP objective is V (λ) = l (λ) +C0

λ[1,d]

0

where

λ = [λ0,λ[1,d]
].

3 METHODOLOGY

In Algorithm 1, we present a simple cu�ing plane algorithm that

we refer to as CPA. In what follows, we use CPA to discuss the

bene�ts of cu�ing plane algorithms, and to explain why existing

algorithms stall in non-convex se�ings. We then present a new

cu�ing plane algorithm that does not stall in non-convex se�ings,

and compare the performance of the cu�ing-plane algorithms with

an o�-the-shelf MINLP solver in Figure 5.

CPA recovers the optimal solution to RiskSlimMINLP by solving

a mixed-integer programming (MIP) surrogate problem where the

loss function l (λ) is approximated by cu�ing planes. A cu�ing plane

or cut is a supporting hyperplane to the loss at a point λt ∈ L:

l (λt) + 〈∇l (λt),λ − λt 〉.

Algorithm 1 Cu�ing Plane Algorithm (CPA)

Input

(xi , yi)Ni=1
training data

L constraint set

C0 `0 penalty parameter

ε stop ∈ [0, 1] optimality gap of acceptable solution

Initialize

k ← 0 number of cuts

ˆl0 (λ) ← {0} cu�ing-plane approximation of loss function

(Vmin, Vmax) ← (0, ∞) bounds on the optimal value

ε ← ∞ optimality gap

1: while ε > ε stop
do

2: (θk , λk) ← provably optimal solution to RiskSlimMIP(ˆlk (·))
3: compute cut parameters l (λk) and ∇l (λk)
4:

ˆlk+1 (λ) ← max{ ˆlk (λ), l (λk) + 〈∇l (λk), λ − λk 〉} .update approximation ∀λ

5: Vmin ← θk +C0 ‖λ
k ‖0 .optimal value of RiskSlimMIP is lower bound

6: if V (λk) < Vmax
then

7: Vmax ← V (λk) .update upper bound

8: λbest ← λk .update best solution

9: end if

10: ε ← 1 −Vmin/Vmax

11: k ← k + 1

12: end while

Output: λbest ε -optimal solution to RiskSlimMINLP

RiskSlimMIP(ˆl (·)) is a MIP surrogate of RiskSlimMINLP where the loss function l (·) is replaced

by the cu�ing-plane approximation
ˆl (·):

min

θ ,λ
θ +C0

λ

0

s.t. θ ≥ ˆl (λ)

λ ∈ L .

(2)

Here, l (λt) ∈ R+ and∇l (λt) ∈ Rd are cut parameters that represent

the value and gradient of the loss at λt :

l (λt) =
1

N

N∑
i=1

log(1 + exp(−〈λt ,yixi 〉)),

∇l (λt) =
1

N

N∑
i=1

−yixi
1 + exp(−〈λt ,yixi 〉)

.

(3)

Cuts can be combined to produce a piecewise linear approximation

of the loss function as shown in Figure 2. We denote a cu�ing plane

approximation of the loss function built from k cuts as:

ˆlk (λ) = max

t=1...k
l (λt) + 〈∇l (λt),λ − λt 〉.

Figure 2: A convex loss function l (λ) and its cutting plane

approximation
ˆl2 (λ) built using cuts at the points λ1

and λ2
.

On iteration k , CPA solves the surrogate RiskSlimMIP(ˆlk (λ))

whose objective contains the approximate loss
ˆlk (λ). CPA uses

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1127

the optimizer of the surrogate (θk ,λk) to: (i) improve
ˆlk (λ) with

a new cut at λk ; (ii) compute bounds on the optimal value of

RiskSlimMINLP to check convergence. �e upper bound is set as

the objective value of the best solution from all iterations Vmax =

mint=1...k l (λ
t) +C0‖λt ‖0.�e lower bound is set as the optimal

value of the surrogate at the last iterationVmin = ˆlk (λk)+C0‖λk ‖0.

CPA converges to an ε-optimal solution of RiskSlimMINLP in a

�nite number of iterations [see 18, for a proof]. �e cu�ing plane

approximation of a convex loss function improves with each cut:

ˆlk (λ) ≤ ˆlk+m (λ) ≤ l (λ) for all λ ∈ L and k,m ∈ N.

Since the cuts at each iteration are not redundant, the lower bound

improves monotonically as CPA progresses. Once the optimality

gap ε is less than a stopping threshold εstop
, CPA terminates and

returns an ε-optimal solution λbest
to RiskSlimMINLP.

Key Benefits of Cu�ing-Plane Algorithms. CPA highlights two

major bene�ts of cu�ing plane algorithms for empirical risk min-

imization: (i) scalability in the sample size; (ii) control over data-

related computation. Since cu�ing plane algorithms only use the

training data to compute cut parameters, which can be achieved

using elementary matrix-vector operations in O(Nd) time at each

iteration, running time scales linearly in N for �xed d (see Figure

3). Moreover, since cut parameters are computed in an isolated step

(e.g. Step 3 in Algorithm 1), users can easily reduce data-related

computation by customizing their implementation to compute cut

parameters more e�ciently (e.g. via parallelization).

CPA also highlights a unique bene�t of cu�ing plane algorithms

in our se�ing. Speci�cally, it recovers the optimal solution to the

non-linear problem RiskSlimMINLP by iteratively solving a lin-

earized surrogate RiskSlimMIP. In practice, this allows us to �t risk

scores with a MIP solver instead of a MINLP solver. As shown

in Figure 5, this can substantially improve our ability to solve

RiskSlimMINLP since MIP solvers typically exhibit be�er o�-the-

shelf performance than MINLP solvers (as MIP solvers have be�er

implementations of branch-and-bound, and MINLP solvers are de-

signed to handle a far more diverse set of optimization problems).

Figure 3: CPA runtime (log-scale) for simulated datasets

with d = 10 and N ∈ [10
3, 10

8
]. As N increases, total run-

ning time scales atO (N), which re�ects the time to compute

cut parameters. Solver time remains roughly constant.

Stalling in Non-Convex Se�ings. Cu�ing plane algorithms for

empirical risk minimization [10, 16, 29] are similar to CPA in that

they solve a surrogate problem at each iteration (i.e., on Step 5 of

Algorithm 1). When these algorithms are applied to problems with

non-convex regularizers or constraints, the surrogate problems are

non-convex and may require an unreasonable amount of time to

solve to optimality (especially on on higher-dimensional problems).

In practice, this prevents the algorithm from improving the cu�ing-

plane approximation and computing a valid lower bound. We refer

to this behavior as stalling.

�ere is no easy �x to prevent cu�ing plane algorithms such

as CPA from stalling in non-convex se�ings. �is is because they

need a provably optimal solution at each iteration to compute a

valid lower bound (i.e., a solution with an optimality gap of 0.0%).

If, for example, CPA only solved RiskSlimMIP until it found a

feasible solution with a non-zero optimality gap, the resulting lower

bound could exceed the true optimal value, leading the algorithm

to terminate early and return a suboptimal solution.

In Figure 4, we illustrate the stalling of CPA on a RiskSlimMINLP

instance where d = 20 (in black). As shown, the time to solve

RiskSlimMIP increases exponentially with each iteration and CPA
stalls on iteration k = 87 as it a�empts to optimize the surrogate

MIP. In this case, the best feasible solution that we recover a�er

6 hours has a large optimality gap as well as a highly suboptimal

loss (which makes sense as the solution optimizes a cu�ing-plane

approximation that uses at most 86 cuts). Given that the value of

the loss is closely related to the performance of the model, this

means that the risk score we obtain a�er 6 hours performs poorly.

Figure 4: CPA (black) and LCPA (red) on a simulated dataset

with d = 20 and N = 50,000. We show the optimality gap

(top) and the time to add a new cut (bottom; log-scale) over

6 hours. CPA stalls a�er adding 86 cuts as the time to op-

timize RiskSlimMIP increases exponentially. �e resulting

solution corresponds to a risk score with poor performance.

In contrast, LCPA does not stall, �nding a near-optimal solu-

tion in 9 minutes, and the optimal solution in 234 minutes.

LCPA uses the remaining time to reduce the optimality gap.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1128

3.1 Lattice Cutting Plane Algorithm

In order to avoid the stalling behavior of existing cu�ing-plane

algorithms in non-convex se�ings, we solve the risk score problem

using the la�ice cu�ing plane algorithm (LCPA; Algorithm 2).

LCPA is a cu�ing-plane algorithm that recovers the optimal so-

lution to RiskSlimMINLP via branch-and-bound (B&B) search. �e

search recursively splits the feasible region of RiskSlimMINLP into

disjoint partitions, discarding partitions that are infeasible or prov-

ably suboptimal. LCPA solves a surrogate linear program (LP) over

each partition. In this approach, the cu�ing-plane approximation

is updated whenever the surrogate LP yields an integer feasible

solution. �e lower bound is set as the smallest possible value of

the surrogate LP over the remaining search region.

As shown in Figure 4, LCPA (in red) does not stall. �is is because

– unlike CPA – LCPA does not need to optimize a non-convex

surrogate to add cuts and compute a valid lower bound. Even so,

LCPA retains the key bene�ts of CPA such as: scalability in the

sample size, control over data-related computation, and the ability

to use a MIP solver.

In what follows, we describe the main elements of LCPA:

B&B Search. In Algorithm 2, we represent the state of the B&B

search using a B&B tree. �is tree is composed of nodes (i.e. leaves)

in the node set N . Each node (Pn ,vn) ∈ N consists of a partition

of the convex hull of constraint set Pn ⊆ conv (L), and a lower

bound for the optimal value of the surrogate over this partition, vn .

Each iteration of LCPA starts by removing a node (Pn ,vn) from

the node set N and solving the surrogate over Pn . �e next steps

depend on the feasibility of RiskSlimLP(ˆlk (·),Pn):

• If RiskSlimLP(ˆlk (·),Pn) yields an integer solution λLP ∈ L,

LCPA updates the cu�ing plane approximation
ˆlk (·) with a cut

at λLP
in Step 8.

• If RiskSlimLP(ˆlk (·),Pn) yields a continuous solution λLP < L,

then LCPA splits the partition Pn into disjoint subsets P′ and

P′′. Each subset is paired with the optimal value of the surrogate

LP to yield the child nodes (P′,vLP) and (P′′,vLP). �e child

nodes are added back into N in Step 18.

• If RiskSlimLP(ˆlk (·),Pn) is infeasible, the node is discarded.

�e search uses rules that are provided by a MIP solver:

• RemoveNode, which takes as input the node set N and outputs

a node (Pn ,vn) (e.g., the node with the smallest vn).

• SplitPartition, which takes as input a partition Pn and the cur-

rent solution λLP
and outputs disjoint partitions that do not

cover Pn (e.g. split on a fractional component of the solution

λLP

j , which returns P′ = {λ ∈ PLP | λ
LP

j ≥ dλLP

j e} and P′′ =

{λ ∈ PLP | λ
LP

j ≤ dλ
LP

j e}). �e output conditions ensure that: (i)

the partitions of all nodes in the node set remain disjoint; (ii) the

search region shrinks even if the solution to the surrogate is not

integer feasible; (iii) the number of nodes is �nite.

Convergence. LCPA checks convergence using bounds on the

optimal value of RiskSlimMINLP. �e upper bound Vmax
is set as

the objective value of the best integer feasible solution in Step 11.

�e lower bound Vmin
is set as the smallest lower bound among

all nodes in Step 20. �is quantity is a lower bound on the optimal

value of the surrogate over the remaining search region

⋃
n Pn ;

that is, the optimal value of RiskSlimLP(ˆlk (·),
⋃
n Pn). �us,Vmin

improves when we add cuts or reduce the remaining search region.

Each iteration of LCPA reduces the remaining search region as it

either �nds an integer feasible solution, identi�es an infeasible parti-

tion, or splits a partition into disjoint subsets. �us, Vmin
increases

monotonically as the search region becomes smaller, and cuts are

added at integer feasible solutions. Likewise,Vmax
decreases mono-

tonically as the search is guaranteed to �nd the optimal solution.

Since there are a �nite number of nodes, LCPA terminates a�er a

�nite number of iterations.

Implementation. We implement LCPA using a MIP solver that

provides control callbacks, such as CPLEX. �e solver handles all

B&B related steps in Algorithm 2 and control callbacks let update

the cu�ing-plane approximation by intervening in the search. In a

basic implementation, we use a control callback to intervene when

Algorirthm 2 reaches Step 6. Our code retrieves the integer feasible

solution, computes the cut parameters, adds a cut, and returns

control back to solver by Step 9.

Algorithm 2 La�ice Cu�ing Plane Algorithm (LCPA)

Input

(xi , yi)Ni=1
training data

L constraint set for RiskSlimMINLP

C0 `0 penalty parameter

ε stop ∈ [0, 1] optimality gap of acceptable solution

RemoveNode rule to pick a node from a node set (provided by MIP solver)

SplitPartition rule to split a partition into disjoint subsets (provided by MIP solver)

Initialize

k ← 0 number of cuts

ˆl0 (λ) ← {0} cu�ing-plane approximation of loss function

(Vmin, Vmax) ← (0, ∞) bounds on the optimal value

ε ← ∞ optimality gap

P0 ← conv (L) partition for initial node

v0 ← Vmin
lower bound for initial node

N ← {(P0, v0) } initial node set

1: while ε > ε stop
do

2: (Pn, vn) ← RemoveNode (N) .n is index of removed node

3: solve RiskSlimLP(ˆlk (·), Pn)
4: λLP ← coe�cients from optimal solution to RiskSlimLP(ˆlk (·), Pn)
5: vLP ← optimal value of RiskSlimLP(ˆlk (·), Pn)
6: if optimal solution is integer feasible then

7: compute cut parameters l (λLP) and ∇l (λLP)

8:
ˆlk+1 (λ) ← max{ ˆlk (λ), l (λLP) + 〈∇l (λk), λ − λLP〉} .update approximation ∀λ

9: if vLP < Vmax
then

10: Vmax ← vLP .update lower bound

11: λbest ← λLP .update best solution

12: N ← N \ {(Ps , vs) | vs ≥ Vmax } .prune suboptimal nodes

13: end if

14: k ← k + 1

15: else if optimal solution is not integer feasible then

16: (P′, P′′) ← SplitPartition(Pn, λLP) .P′ , P′′ are disjoint subsets of Pn
17: (v ′, v ′′) ← (vLP, vLP) .vLP

is lower bound for P′, P′′

18: N ← N ∪ {(P′, v ′), (P′′, v ′′) } .add child nodes toN

19: end if

20: Vmin ← minN vs .lower bound is smallest lower bound among nodes inN

21: ε ← 1 −Vmin/Vmax .update optimality gap

22: end while

Output: λbest ε -optimal solution to RiskSlimMINLP

RiskSlimLP(ˆl (·), P) is a LP relaxation of RiskSlimMIP(ˆl (·)) over the partition P ⊆ conv (L):

min

θ ,λ,α
θ +C0

d∑
j=1

αj

s.t. λ ∈ P

θ ≥ ˆl (λ)

αj = max(λj , 0)/Λmax

j +min(λj , 0)/Λmin

j for j = 1 . . . d .

(4)

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1129

LCPA CPA MINLP

Time to Fit a Good Risk Score

i.e., the time until an algorithm �nds a solution whose

loss is within 10% of the optimal loss. �is re�ects the

time for an algorithm to return a risk score with good

risk calibration and AUC without a proof of optimality.

Optimality Gap of Best Solution at Termination

i.e., the value of (Vmax −Vmin)/Vmax
whereVmax

is

the objective value of the best solution found at termination.

A gap of 0.0% means the algorithm has found the optimal

solution and provided a proof of optimality before 6 hours.

% of Time Spent on Data-Related Computation

i.e., the proportion of total run time that the algorithm spent

computing the value, gradient, or Hessian of the loss function.

Figure 5: Performance of LCPA, CPA, and a commercialMINLP solver (Artelsys Knitro) on hard instances of RiskSlimMINLP

for simulated datasets [details in 33]. MINLP fails to produce good risk scores on instances with large d or N as it struggles

with data-related computation. CPA and LCPA scale linearly in N when d is �xed: if they solve an instance for a given d , then
they also solve instances for larger N in O (N) additional time. CPA stalls when d ≥ 15 and returns low-quality risk scores

when d ≥ 20. In contrast, LCPA does not stall, and recovers a good model in all cases.

4 BENCHMARKING

Datasets. We used 6 datasets shown in Table 2. We selected

these datasets so as to vary the size and types of variables (adult,

mammo, mushroom, spambase), and to illustrate potential applications

of risk scores (arrest, bank). All datasets are available at the UCI

Repository [23], other than arrest, which can be requested from

ICPSR. We processed each dataset by binarizing all categorical

features and some real-valued features. For reproducibility, we

include all processed UCI datasets at github.com/ustunb/risk-slim

[see 36, for code to process arrest].

Methods. For each dataset, we �t a risk score with integer coe�-

cients λj ∈ [−5, 5] and model size

λ

0

≤ 5 to match the form of

models used in practice [e.g., 12]. We use the following methods:

• RiskSLIM: We formulate an instance of RiskSlimMINLP where:

λ0 ∈ {−100, . . . , 100}; λj ∈ {−5, . . . , 5}; and

λ

0

≤ 5. We set

C0 to a small value (10
−8

) to recover the best model under these

constraints [33]. We solve each instance using LCPA along with

the improvements in [33]. We use CPLEX 12.6.3 on a 3.33 GHz

CPU with 16 GB RAM and cap runtime to 20 minutes.

• PLR (Penalized Logistic Regression): We use the glmnet package

[11] to �t logistic regression models with a combined `1 + `2
penalty. We add constraints to bound λj ∈ [−5, 5], and �t mod-

els for 1,100 free parameter instances: 11 values of the mixing

parameter {0.0, 0.1, . . . , 1.0} × 100 values of the regularization

penalty (chosen by glmnet). �ese free parameters mean that

PLR also covers the following variants of logistic regression as

special cases: standard logistic regression (no penalty); Lasso

(pure `1-penalty); and Ridge (pure `2-penalty).

• Rd (Naı̈ve Rounding): We �t a pool of models with PLR. For each

model in the pool, we round each coe�cient to the nearest integer

in {−5, . . . , 5} by se�ing λj ←
⌈
min(max(λj ,−5), 5)

⌋
. We round

the intercept to the nearest integer by se�ing λ0 ← dλ0c.

• RsRd (Rescaled Rounding): We �t a pool of models with PLR.

For each model in the pool, we rescale coe�cients so that the

largest coe�cient is ±5, then round to the nearest integer (i.e.

λj →
⌈
γλj

⌋
where γ = 5/maxj |λj |). Rescaling aims to prevent

rounding coe�cients to zero when |λj | < 0.5 for many j.

Metrics. We evaluate all models in terms of risk-calibration (mea-

sured by CAL) and rank accuracy (measured by AUC). We use

reliability diagrams to see how the predicted risk matches the ob-

served risk at each score. We estimate the observed risk at each

score s as p (s) = 1

| {i :si=s } |
∑
i :si=s 1 [yi = +1] and summarize cali-

bration over the full reliability diagram using the calibration error

CAL = 1

N

√∑
s
∑
i :si=s (pi − p (s))

2.

Model Selection. We use nested 5-CV to set the parameters of

the �nal model and evaluate its predictive performance. �e free

parameters of the �nal model re�ect an instance that: (i) satis�es the

model size constraint; (ii) maximizes the 5-CV mean test AUC. We

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1130

https://github.com/ustunb/risk-slim

do not tune parameters for RiskSLIM since we include the model

size constraint in the coe�cient set.

4.1 Results

Performance. As shown in Table 2, RiskSLIM models have the

best test CAL on 6/6 datasets and the best test AUC on 5/6 datasets.

In comparison, models built heuristically perform far worse in

terms of test CAL, and slightly worse in terms of test AUC. We

can explain these results by observing that: (i) models that a�ain

low values of the logistic loss have good risk calibration [see also

6]; (ii) as we are ��ing from a simple class of models, risk scores

generalize well (i.e. test CAL/AUC is close to training CAL/AUC).

Since RiskSLIM models optimize the loss over exact constraints on

model form, they a�ain minimal or near-minimal values of the loss.

�us, they perform well in terms of training CAL as per (i), and in

terms of test CAL as per (ii).

Computation. Although the risk score problem is NP-hard, we

�t RiskSLIM models with small optimality gaps in ≤20 minutes.

Our approach also has some practical bene�ts that are di�cult to

measure. In particular, it can build and evaluate predictive per-

formance without the need for parameter tuning and nested CV,

meaning that we had to �t a total of 6 models. In comparison,

the baseline methods do require parameter tuning and nested CV,

which required training and processing over 33,000 models. �us,

even as baseline methods are much faster to run for a single set of

parameters, it may take far longer to train these models depending

on the post-processing techniques that are used.

Optimality Gaps. RiskSLIM is the only method to pair models

with a measure of optimality. In practice, small optimality gaps are

valuable because they suggest we have �t the best model in our

model class. �us, if a risk score with a small optimality gap per-

forms poorly, we can a�ribute the poor performance to a restrictive

model class and improve performance by considering models with

more terms or larger coe�cients. In contrast, heuristic methods

do not provide such a guarantee, so when a risk score performs

poorly, we cannot tell if this is because the constraints are overly

restrictive or because we used an approach that cannot �nd the

best possible model.

Pitfalls and Best Practices for Heuristics. Our results show that

the performance of risk scores built heuristically can vary signi�-

cantly based on post-processing techniques, constraints on model

form, and the range of features. In some cases, risk scores built by

rounding coe�cients perform well (e.g. Rd on bank). In others, per-

formance can falter (e.g. Rd on spambase). In practice, performance

issues are o�en overlooked as common heuristics result in good

AUC but poor CAL [e.g. the rescaling in RsRd, used by 25, 30] and

summary statistics such as CAL and AUC conceal local issues over

the entire reliability diagram and ROC curve (see e.g. Figure 7). To

mitigate these issues, we recommend the following practices when

using or designing heuristics:

• Select models a�er rounding. If we selected a �nal model from the

pool of PLR models before rounding the coe�cients, we could

greatly alter the loss and thus reduce performance. To mitigate

this risk, we �rst round the coe�cients of all models in the pool,

and then select among the rounded models.

• Avoid scaling. Rescaling coe�cients may improve AUC but dras-

tically reduces CAL. �is is because the logistic loss is not scale

invariant (see e.g. the reliability diagram for RsRd in Figure 7).

�e decrease in CAL due to scaling is re�ected by the much

higher values of the loss for RsRd in Table 2.

• Select models that optimize K-CV AUC instead of K-CV CAL. We

compared both procedures. Choosing a model that optimizes

the K-CV CAL leads to models with slightly be�er CAL but far

worse AUC. �is is because trivial and near-trivial models have

low CAL on problems with class imbalance.

• Binarize real-valued features. When datasets contain real-valued

features (e.g. spambase), PLR may assign small coe�cients to

features with large values. In such cases, rounding can greatly

impact performance by removing features such that |λj | < 0.5.

�is issue is best addressed by binarizing: rescaling coe�cients

before rounding a�ects calibration; normalizing reduces usability

as it requires users must also normalize when using the model.

�ese recommendations are for heuristics only. RiskSLIM does not

need them.

Dataset Metric PLR Rd RsRd RiskSLIM

adult
N = 32561

d = 36

test cal

test auc

model size

loss value

optimality gap

5.5%

0.817

4

0.451

-

4.3%

0.830

4

0.417

-

9.1%

0.830

4

0.484

-

2.6%

0.854

5

0.385

9.7%

arrest
N = 22530

d = 48

test cal

test auc

model size

loss value

optimality gap

7.5%

0.700

5

0.638

-

5.7%

0.691

5

0.626

-

20.8%

0.691

5

1.282

-

1.7%

0.697

5

0.609

4.0%

bank
N = 41188

d = 57

test cal

test auc

model size

loss value

optimality gap

2.2%

0.725

2

0.339

-

1.4%

0.759

5

0.289

-

9.5%

0.759

5

0.953

-

1.3%

0.760

5

0.289

3.5%

mammo
N = 961

d = 14

test cal

test auc

model size

loss value

optimality gap

7.3%

0.845

3

0.482

-

8.1%

0.845

3

0.480

-

15.3%

0.845

3

0.624

-

5.0%

0.843

5

0.469

0.0%

mushroom
N = 8124

d = 113

test cal

test auc

model size

loss value

optimality gap

20.9%

0.976

5

0.362

-

12.3%

0.973

5

0.200

-

6.5%

0.977

5

0.162

-

1.8%

0.989

5

0.069

0.0%

spambase
N = 4601

d = 57

test cal

test auc

model size

loss value

optimality gap

10.5%

0.823

4

0.553

-

24.2%

0.908

5

0.472

-

23.6%

0.862

5

5.670

-

11.7%

0.928

5

0.349

27.8%

Table 2: Performance of risk scores with

λ

0

≤ 5 and

λj ∈ {−5 . . . 5}. Here: test cal is the 5-CV mean test CAL; test
auc is the 5-CV mean test AUC; model size, loss value and

optimality gap pertain to the �nal model �t using the entire

dataset.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1131

arrest
test cal 1.7%

train cal 2.6%

test auc 0.697

train auc 0.701

1. Prior Arrests ≥ 2 1 point · · ·

2. Prior Arrests ≥ 5 1 point + · · ·

3. Prior Arrests for Local Ordinance 1 point + · · ·

4. Age at Release between 18 to 24 1 point + · · ·

5. Age at Release ≥ 40 -1 point + · · ·

ADD POINTS FROM ROWS 1–5 SCORE = · · ·

SCORE -1 0 1 2 3 4

RISK 11.9% 26.9% 50.0% 73.1% 88.1% 95.3%

bank
test cal 1.3%

train cal 1.1%

test auc 0.760

train auc 0.760

1. Call between January and March 1 point · · ·

2. Called Previously 1 point + · · ·

3. Previous Call was Successful 1 point + · · ·

4. Employment Indicator < 5100 1 point + · · ·

5. 3 Month Euribor Rate ≥ 100 -1 point + · · ·

ADD POINTS FROM ROWS 1–5 SCORE = · · ·

SCORE -1 0 1 2 3 4

RISK 4.7% 11.9% 26.9% 50.0% 73.1% 88.1%

Figure 6: RiskSLIM models for arrest and bank. �e arrest

model predicts the risk that a prisoner is arrested within 3

years of release. �e bankmodel predicts the risk that a client

opens a bank account a�er a marketing call.

5 ICU SEIZURE PREDICTION

Seizure prediction in the ICU is a di�cult problem. Current practice

is based on continuous electroencephalography (cEEG), which is a

technique to monitor electrical activity in the brain by means of

electrodes. Clinicians are trained to recognize a large set of cEEG

pa�erns, only some of which may be predictive. �e characteristics

of cEEG pa�erns are then used to assess seizure risk, and to decide if

patients require a medical intervention, which may be dangerous, or

further monitoring, which is expensive. In what follows, we discuss

a collaboration with the Massachuse�s General Hospital (MGH)

where we built a customized risk score to inform such decisions.

Dataset. We used a dataset of cEEG recordings from the Critical

Care EEG Monitoring Research Consortium. It contains N = 5427

patient records and d = 87 variables related to medical history,

secondary symptoms, and characteristics of 5 well-known cEEG

pa�erns: lateralized periodic discharges (LPD); lateralized rhythmic

delta (LRDA); generalized periodic discharges (GPD); generalized

rhythmic delta (GRDA); and bilateral periodic discharges (BiPD).

Here, yi = +1 if a patient in the ICU has a seizure in the next 24

hours. �e problem is imbalanced with Pr (yi = +1) = 12.5%.

Model Requirements. Our collaborators at MGH wanted a model

that was risk-calibrated, sparse, aligned with domain knowledge,

and let clinicians make predictions without checking too many

cEEG pa�erns. To address these requirements, they speci�ed sev-

eral operational constraints:

• Limited Model Size: �e model had to use at most 4 variables so

that it would be easy to validate, and use in an ICU.

• Monotonicity: �e model had to obey monotonicity constraints

for well-known risk factors (e.g. it could not suggest that prior

seizures reduce seizure risk).

• No Linear Dependencies: �e model could not include linearly

dependent variables (e.g. it could not include Male and Female).

• Speci�c cEEG Pa�erns or Any cEEG Pa�ern: �e dataset included

variables for speci�c cEEG pa�erns (e.g. MaxFrequencyLPD) and

any cEEG pa�ern (e.g. MaxFrequencyAnyPa�ern). �e model had

to use variables for speci�c pa�erns or any pa�ern, not both.

• Frequency in Continuous Encoding or Binary Encoding: �e dataset

included two kinds of variables to measure the frequency of a

cEEG pa�ern: (i) a real-valued variable (e.g. MaxFrequencyLPD

∈ [0, 3.0]); (ii) 7 binary variables (e.g. MaxFrequencyLPD ≤ 0.5 Hz).

Models could use the real-valued variable or the binary variables.

To prevent clinicians from having to check multiple thresholds,

models had to use ≤ 2 binary variables for each cEEG pa�ern.

Methods. We used the methods and metrics described in Section

4, which we adapted to address operational constraints as follows.

We �t a RiskSLIM model by solving RiskSlimMINLP with the op-

erational constraints. �is MINLP had 20 additional constraints, 2

additional variables, and was solved to optimality in ≤ 20 minutes.

�e baseline methods had built-in mechanisms for sign constraints

but needed tuning to handle the remaining constraints. We used

nested 5-CV and selected a �nal model that: (i) obeyed all opera-

tional constraints and (ii) maximized the mean 5-CV test AUC.

Results. Table 3 illustrates the performance bene�ts of an opti-

mization based approach in a constrained se�ing: the RiskSLIM

model has a test CAL/AUC of 2.5%/0.801 while the best model from

the baseline methods has a test CAL/AUC of 3.7%/0.738.

As shown in Figure 7, models may have important di�erences

in risk calibration over the full reliability diagram. RiskSLIM risk

estimates are roughly monotonic and stable. Rd risk estimates are

unstable and non-monotonic. RsRd are skewed towards extreme

values as a result of scaling. As noted by our collaborators, the

non-monotonicity of Rd and RsRd is problematic as it suggests

patients with a score of 3.5 may have more seizures compared to

patients with a score of 4.0.

Figure 7 also highlights some of the usability bene�ts of linear

models with small integer coe�cients. When input variables belong

to a small discrete set, scores also belong to a small discrete set.

�is reduces the number of operating points on the ROC curve

and reliability diagram and makes it easy to pick an operating

point. When input variables are binary, risk scores have yet another

bene�t in that the decision rule at each operating point is a boolean

function. For the RiskSLIM model, for example, the decision rule

predict ŷi = +1 if score ≥ 2 is equivalent to the boolean function:

predict Seizure if AnyBriefRhythmicDischarge

∨ Pa�ernsIncludeLPD

∨ (AnyPriorSeizure ∧ EpiletiformDischarge).

Small integer coe�cients make it easy to extract such rules by

listing the conditions when the score exceeds the threshold. In

order to illustrate this, we show the score function of the PLR

model in Table 3 below.

score = − 2.35

+ 0.91 Pa�ernsIncludeBiPD or LRDA or LPD

+ 0.03 AnyPriorSeizure.

+ 0.61 × MaxFrequencyLPD

In this case, it is much harder for users to extract a boolean function

since the score function uses real-valued coe�cients, and comput-

ing the score requires multiplication due to a non-binary feature,

MaxFrequencyLPD.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1132

Optimized Risk Score (RiskSLIM)

1. AnyBriefRhythmicDischarge 2 points · · ·

2. Pa�ernsInclude LPD 2 points + · · ·

3. AnyPriorSeizure 1 point + · · ·

4. Epiletiform or Discharge 1 point + · · ·

ADD POINTS FROM ROWS 1–4 SCORE = · · ·

SCORE 0 1 2 3 4 5 6

RISK 4.7% 11.9% 26.9% 50.0% 73.1% 88.1% 95.3%

`1 + `2 Penalized Logistic Regression + Rounding (Rd)

1. AnyPriorSeizure 1 point · · ·

2. Pa�ernsInclude BiPD or LRDA or LPD 1 point + · · ·

3. MaxFrequencyLPD × 1 point per Hz + · · ·

ADD POINTS FROM ROWS 1–3 SCORE = · · ·

SCORE 0.0 1.0 2.0 2.5 3.0 3.5 4.0 4.5 5.0

RISK 4.7% 11.9% 26.9% 37.8% 50.0% 62.2% 73.1% 81.8% 88.1%

`1 + `2 Penalized Logistic Regression + Scaling + Rounding (RsRd)

1. AnyPriorSeizure 5 points · · ·

2. Pa�ernsInclude BiPD or LRDA or LPD 1 point + · · ·

3. MaxFrequencyLPD 5 points per Hz + · · ·

ADD POINTS FROM ROWS 1–3 SCORE = · · ·

SCORE 0 to 10 12.5 15.0 20.0 20 to 25

RISK < 5.0% 7.6% 50.0% 92.4% > 95.0%

Figure 7: Risk scores, ROC curves, and reliability diagrams

for RiskSLIM, Rd and RsRd. We show the �nal model on train-

ing data in black, and fold-basedmodels on test data in grey.

OBJECTIVE CONSTRAINTS OTHER INFORMATION

Method
Test

CAL

Test

AUC

Model

Size

Instances

Trained

% Feasible

Instances

Loss

Value

Opt.

Gap

Train

CAL

Train

AUC

RiskSLIM
2.5%

1.9 - 3.4%

0.801

0.758 - 0.841

4 1 100% 0.293 0.0% 2.0% 0.806

PLR
4.5%

3.4 - 6.6%

0.731

0.712 - 0.772

2 1100 0% 0.326 - 3.9% 0.731

Rd
3.7%

2.9 - 5.0%

0.738

0.712 - 0.805

3 1100 12% 0.313 - 1.9% 0.767

RsRd
11.5%

10.7 - 12.7%

0.738

0.712 - 0.805

3 1100 11% 1.003 - 10.3% 0.767

Table 3: Performance of models built with the methods in

Section 4. We show the 5-CV mean test CAL/AUC (top) and

the 5-CV min-max (bottom). An instance is a unique combi-

nation of free parameters for a given method.

6 DISCUSSION

Our goal in this paper was to develop a principled approach to

learn simple risk scores from data. To this end, we formulated an

exact optimization problem to �t risk scores that were optimized

for feature selection, small integer coe�cients, and operational

constraints. We then solved this problem with a new cu�ing plane

algorithm that does not stall in non-convex se�ings and whose

running time scales linearly with the number of samples in a dataset.

As we showed, our approach resulted in risk scores with im-

proved risk-calibration and AUC – especially in constrained set-

tings. In addition, it had practical bene�ts in that: (i) it can address

operational constraints without parameter tuning, which greatly

reduces the number of models needed to build and evaluate a risk

score; (ii) it pairs models with an optimality gap to determine if

poor performance is due to the model class or the ��ing process.

Interesting directions for future work include extending our

approach to build risk scores with various kinds of operational

constraints (e.g. fairness constraints), and using LCPA to �t other

kinds of supervised learning models with non-convex regularizers

or constraints.

ACKNOWLEDGMENTS

We gratefully acknowledge support from Siemens, Phillips, and

Wistron, and the NSF. We would like to thank Paul Rubin for help-

ful discussions, and our collaborators Aaron Struck and Brandon

Westover for their guidance on the seizure prediction problem.

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1133

REFERENCES

[1] Philip Bobko, Philip L Roth, and Maury A Buster. 2007. �e usefulness of unit

weights in creating composite scores. Organizational Research Methods 10, 4

(2007), 689–709.

[2] Pierre Bonami, Mustafa Kilinç, and Je� Linderoth. 2012. Algorithms and so�-

ware for convex mixed integer nonlinear programs. In Mixed integer nonlinear

programming. Springer, 1–39.

[3] Stephen P Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge

university press.

[4] Emilio Carrizosa, Amaya Nogales-Gómez, and Dolores Romero Morales. 2016.

Strongly agree or strongly disagree?: Rating features in Support Vector Machines.

Information Sciences 329 (2016), 256–273.

[5] Rich Caruana, Yin Lou, Johannes Gehrke, Paul Koch, Marc Sturm, and Noemie

Elhadad. 2015. Intelligible models for healthcare: Predicting pneumonia risk and

hospital 30-day readmission. In Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining. ACM, 1721–1730.

[6] Rich Caruana and Alexandru Niculescu-Mizil. 2004. Data mining in metric space:

an empirical analysis of supervised learning performance criteria. In Proceedings

of the 10th International Conference on Knowledge Discovery and Data Mining.

ACM, 69–78.

[7] Yann Chevaleyre, Frédéerick Koriche, and Jean-Daniel Zucker. 2013. Rounding

methods for discrete linear classi�cation. In Proceedings of the 30th International

Conference on Machine Learning. 651–659.

[8] Grant Duwe and KiDeuk Kim. 2016. Sacri�cing accuracy for transparency in

recidivism risk assessment: the impact of classi�cation method on predictive

performance. Corrections (2016), 1–22.

[9] Şeyda Ertekin and Cynthia Rudin. 2015. A Bayesian Approach to Learning

Scoring Systems. Big Data 3, 4 (2015), 267–276.

[10] Vojtěch Franc and Sören Sonnenburg. 2009. Optimized cu�ing plane algorithm

for large-scale risk minimization. Journal of Machine Learning Research 10 (2009),

2157–2192.

[11] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2010. Regularization

paths for generalized linear models via coordinate descent. Journal of Statistical

So�ware 33, 1 (2010), 1–22.

[12] Brian Gage, Amy Waterman, William Shannon, Michael Boechler, Michael Rich,

and Martha Radford. 2001. Validation of clinical classi�cation schemes for

predicting stroke. Journal of the American Medical Association 285, 22 (2001),

2864–2870.

[13] Sharad Goel, Justin M Rao, and Ravi Shro�. 2015. Precinct or Prejudice? Un-

derstanding Racial Disparities in New York City’s Stop-and-Frisk Policy. Un-

derstanding Racial Disparities in New York City’s Stop-and-Frisk Policy (March 2,

2015) (2015).

[14] Bryce Goodman and Seth Flaxman. 2016. EU regulations on algorithmic decision-

making and a “ right to explanation”. arXiv preprint arXiv:1606.08813 (2016).

[15] Maya Gupta, Andrew Co�er, Jan Pfeifer, Konstantin Voevodski, Kevin Canini,

Alexander Mangylov, Wojciech Moczydlowski, and Alexander Van Esbroeck.

2016. Monotonic calibrated interpolated look-up tables. Journal of Machine

Learning Research 17, 109 (2016), 1–47.

[16] �orsten Joachims, �omas Finley, and Chun-Nam John Yu. 2009. Cu�ing-plane

training of structural SVMs. Machine Learning 77, 1 (2009), 27–59.

[17] Jongbin Jung, Connor Concannon, Ravi Shro�, Sharad Goel, and Daniel G Gold-

stein. 2017. Simple rules for complex decisions. (2017).

[18] James E Kelley, Jr. 1960. �e cu�ing-plane method for solving convex programs.

J. Soc. Indust. Appl. Math. 8, 4 (1960), 703–712.

[19] Y Kodrato�. 1994. �e comprehensibility manifesto. KDD Nugget Newsle�er 94,

9 (1994).

[20] Wojciech Kotlowski, Krzysztof J Dembczynski, and Eyke Huellermeier. 2011.

Bipartite ranking through minimization of univariate loss. In Proceedings of the

28th International Conference on Machine Learning. 1113–1120.

[21] Himabindu Lakkaraju, Stephen H Bach, and Jure Leskovec. 2016. Interpretable

decision sets: A joint framework for description and prediction. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining. ACM, 1675–1684.

[22] Benjamin Letham, Cynthia Rudin, Tyler H. McCormick, and David Madigan.

2015. Interpretable classi�ers using rules and Bayesian analysis: building a be�er

stroke prediction model. Annals of Applied Statistics 9, 3 (2015), 1350–1371.

[23] M. Lichman. 2013. UCI Machine Learning Repository. (2013).

[24] Dmitry Malioutov and Kush Varshney. 2013. Exact Rule Learning via Boolean

Compressed Sensing.. In Proceedings of International Conference on Machine

Learning. 765–773.

[25] Pennsylvania Commission on Sentencing. 2012. Interim Report 4: Development

of Risk Assessment Scale. Technical Report.

[26] Mark D Reid and Robert C Williamson. 2010. Composite binary losses. �e

Journal of Machine Learning Research 11 (2010), 2387–2422.

[27] Toshiki Sato, Yuichi Takano, Ryuhei Miyashiro, and Akiko Yoshise. 2016. Feature

subset selection for logistic regression via mixed integer optimization. Computa-

tional Optimization and Applications (2016), 1–16.

[28] William Souillard-Mandar, Randall Davis, Cynthia Rudin, Rhoda Au, David J

Libon, Rodney Swenson, Catherine C Price, Melissa Lamar, and Dana L Penney.

2016. Learning classi�cation models of cognitive conditions from subtle behaviors

in the digital clock drawing test. Machine learning 102, 3 (2016), 393–441.

[29] Choon Hui Teo, S Vishwanathan, Alex Smola, and �oc V Le. 2009. Bundle

methods for regularized risk minimization. Journal of Machine Learning Research

1 (2009), 55.

[30] U.S. Department of Justice. 2005. �e mathematics of risk classi�cation: changing

data into valid instruments for juvenile courts. (2005).

[31] Berk Ustun, Lenard A Adler, Cynthia Rudin, Stephen V Faraone, �omas J

Spencer, Patricia Berglund, Michael J Gruber, and Ronald C Kessler. 2017. �e

World Health Organization Adult A�ention-De�cit/Hyperactivity Disorder Self-

Report Screening Scale for DSM-5. Jama psychiatry 74, 5 (2017), 520–526.

[32] Berk Ustun and Cynthia Rudin. 2015. Supersparse linear integer models for

optimized medical scoring systems. Machine Learning (2015), 1–43.

[33] Berk Ustun and Cynthia Rudin. 2016. Learning optimized risk scores on large-

scale datasets. arXiv preprint arXiv:1610.00168 (2016).

[34] Berk Ustun, M Brandon Westover, Cynthia Rudin, and Ma� T Bianchi. 2016.

Clinical prediction models for sleep apnea: the importance of medical history

over symptoms. Journal of clinical sleep medicine: JCSM: o�cial publication of

the American Academy of Sleep Medicine 12, 2 (2016), 161.

[35] Tong Wang, Cynthia Rudin, F Doshi, Yimin Liu, Erica Klamp�, and Perry Mac-

Neille. 2015. Bayesian Or’s of And’s for interpretable classi�cation with applica-

tion to context aware recommender systems. (2015).

[36] Jiaming Zeng, Berk Ustun, and Cynthia Rudin. 2016. Interpretable classi�cation

models for recidivism prediction. Journal of the Royal Statistical Society: Series A

(2016).

KDD 2017 Research Paper KDD’17, August 13–17, 2017, Halifax, NS, Canada

1134

	Abstract
	1 Introduction
	2 Problem Statement
	3 Methodology
	3.1 Lattice Cutting Plane Algorithm

	4 Benchmarking
	4.1 Results

	5 ICU Seizure Prediction
	6 Discussion
	Acknowledgments
	References

