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Abstract

In machine learning, recourse refers to the ability
to achieve a desired outcome under a fixed pre-
diction model. In this paper, we present a new
approach to audit the recourse of linear classifi-
cation models. Given a linear classifier, we for-
mulate an optimization problem to find an action-
able set of changes that an individual can make
to achieve a desired outcome. We then solve our
problem to: (i) evaluate the cost and feasibility of
recourse of the classifier over a target population;
and (ii) generate a list of informative changes for
an individual to flip their assigned prediction. We
discuss the need to audit recourse through exper-
iments on a credit scoring problem, where we
show how common modeling practices can signif-
icantly alter the cost and feasibility of recourse of
a classifier without affecting its performance.

1. Introduction

In machine learning, recourse refers to the ability to achieve
a desired outcome under a fixed prediction model. Consider,
for example, a classifier built to automate lending decisions.
If this model does not provide recourse to a person who is
denied a loan, then this person cannot change any of the
input variables of the model to be approved for a loan, and
will be denied credit so long as the model is deployed.

A prediction model should provide all individuals with ac-
tionable recourse to all individuals when they are used to
allocate goods that should be universally accessible, such
as credit (Siddiqi, 2012), employment (Ajunwa et al., 2016)
and social services (Chouldechova et al., 2018). The po-
tential lack of recourse in such applications often motivates
calls for transparency in algorithmic decision-making (see
e.g., Citron & Pasquale, 2014; Wachter et al., 2017; Doshi-
Velez et al., 2017). However, transparency does not guar-
antee recourse. In practice, even simple transparent models
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such as linear classifiers can fail to provide an individual
with recourse due to common modeling decisions that are
difficult to regulate, including:

o Feature Selection: A model could use features that are
immutable (e.g. female), conditionally immutable (e.g.
has_phd, which can only change from FALSE — TRUE),
or should not be considered actionable (e.g. married).

e Choice of Operating Point: A probabilistic classifier that
provides recourse at standard threshold (e.g., y; = 1 if
predicted risk > 50%) could fail to do so at a more con-
servative threshold (e.g., 9; = 1 if predicted risk > 80%).

e Out-of-Sample Deployment: A feature needed for re-
course could be missing for individuals in the target pop-
ulation.

Without a formal procedure to audit recourse, we can easily
deploy a model that precludes individuals from achieving a
desired outcome.

In this paper, we present a new approach to audit recourse
for linear classification models (e.g., logistic regression mod-
els, linear SVMs, and linearizable boolean models such as
rule sets and decision lists). We formulate an optimiza-
tion problem to find an actionable set of changes that an
individual can make to flip the prediction of a given lin-
ear classifier. Our problem is specifically designed to find
changes that are are actionable, so they do not affect im-
mutable features or alter mutable features in an infeasible
way (e.g., n_credit_cards from 5 — 0.5 or —1, or has_phd
from TRUE — FALSE). Since such constraints are often
discrete, we express our problem as an integer program (IP),
which can quickly recover a globally optimal set of actions
to attain a desired outcome or a certificate to state that the
model does not provide actionable recourse.

We solve our IP to design two auditing tools:

1. A procedure to evaluate the feasibility and cost of re-
course of the classifier for all individuals in a target
population (for model development, procurement, or 3rd
party audits such as algorithmic impact assessments, Dil-
lon Reisman, 2018). When our optimization problem
is infeasible, this certifies that there is no change that a
person to attain the desired outcome (i.e., the classifier
does not provide actionable recourse for this person). Ac-
cordingly, we can certify that a model provides recourse
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to individuals in a target sample by solving our problem
for each point in the sample. By comparing the cost of
recourse, we can assess the difficulty of changes required
for individuals to achieve a desired outcome.

2. A method to generate a list of actionable changes for an
individual to flip the prediction of the classifier. We refer
to this list as a flipset and show an example in Figure
1. In the United States, for example, the Fair Credit
Reporting Act (U.S. Congress, 2003) requires sending
an adverse action notice to individuals who are denied
credit from a prediction model to explain the principal
reason for the denial. By including a flipset in an adverse
action notice, an individual would know exact changes
to guarantee approval the future (see also Taylor, 1980;
Selbst & Barocas, 2018, for a discussion of how adverse
action notices fail to provide actionable information).

FEATURES TO CHANGE CURRENT VALUES REQUIRED VALUES

n_credit_cards 5 — 3

current_debt $3,250 — $1,000
has_savings_account FALSE — TRUE
has_retirement_account FALSE — TRUE

Figure 1. lustrative flipset for an individual who is denied credit
by a classifier. Each item (i.e. row) shows an actionable set of
changes to a subset of features to “flip” the prediction from y = —1
to g = +1. These changes guarantee that the individual will be
approved for credit so long as other features do not change.

RELATED WORK

Our work is a new application for inverse classification
(Aggarwal et al., 2010), which aims to determine how the
inputs to a prediction model can be manipulated to obtain a
desired outcome (see e.g., Chang et al., 2012; Yang et al.,
2012, for other applications).

Our work is broadly related to tools to explain the predic-
tions of machine learning models (see e.g., Ribeiro et al.,
2016). While such tools can provide valuable explanations
of how a model outputs a specific prediction, these expla-
nations do not correspond to actionable changes that can
be used to reliably attain a desired outcome. Moreover, the
tools do not provide a formal guarantee for an auditor to
certify that an actionable set of changes does not exist.

Our ideas are also related to seminal work on counterfac-
tual explanations by Wachter et al. (2017)'. In particu-
lar, our tools solve an optimization problem to recover
counterfactual explanations that are actionable and glob-
ally optimal with respect to a user-specified cost function.
Our problem is fundamentally different from the one pro-
posed by Wachter et al. (2017). Their approach can ex-

!Given a model and an example, a counterfactual explanation is
the smallest set of changes to features to obtain a desired outcome.

tract counterfactual explanations from black-box models,
but does not provide the feasibility or optimality guar-
antees to audit recourse because: (i) it cannot constrain
changes to be actionable; (ii) it restricts feasible changes
to differences between points in the training data (i.e.,
a € {x — x' for x,x' in the training data}) 2.

Other concepts related to recourse include: anchors, which
are subsets of features that fix predicted the outcome
(Ribeiro et al., 2018); and strategic classification, which
considers the converse problem of training classifiers that
are robust to manipulation (Hardt et al., 2016).

2. Problem Statement

We consider a standard classification setting where each
individual is characterized by features = [1, 2 ... 24] C
XoU...UX; CR¥!andalabel y € {—1,+1}.

We will audit a linear classifier f(x) = sign ((w, «)) where
w = [wo, w; ... wyg] C R is a coefficient vector and wy
is the intercept. We denote the desired outcome as y = 1
and assume sign (0) = 1 so that § = 1 [{(w, ) > 0].

Given an individual such that f(z) = —1, we determine if
there exists an action a such that f(x + a) = 1 by solving
an optimization problem of the form,

min cost(a; x)
st. fle+a)=1 (1)
a < A(x).

Here:

» A(x) is a set of feasible actions @ = [0,a; ... aq] from
x. We constrain each element of a to produce a feasible
feature aj; S Aj({L'j) - {CL]' eR | a; -|—(Ej S X]} We let
Aj(xj) = {0} if feature j is immutable.

o cost(-;x) A(x) — R, is a user-specified cost
function that satisfies the following properties: (i)
cost(x; x) = 0 (no action < no cost); (ii) cost(a; x) <
cost(a + €1;; ) (larger actions < higher cost).

If (1) is infeasible, then no action can achieve a desired
outcome from «, and thus we have certified that the model
does not provide actionable recourse for this person. If (1) is
feasible, then its optimal solution is the minimal-cost action
to flip the prediction of . In this case, we use the solution
to create the first item in a flipset and enumerate additional
items as described in Section 3.2.

2To illustrate some practical consequences of (i) and (ii): the
proposed approach could output an explanation that states that a
person can flip their prediction by changing an immutable feature,
due to (i). If so, an auditor could not conclude that the model
did not provide recourse, as there could exist a way to flip the
prediction that was not reflected in the training data, due to (ii).
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3. Integer Programming Approach

We consider a discrete version of the optimization problem
in (1), which we express as an integer program (IP) and
solve with an IP solver (see Mittleman, 2018, for a list).
Our approach has several key benefits: (i) it can directly
constrain actions for discrete-valued features (e.g., binary,
categorical, ordinal); (ii) it can minimize non-linear and non-
convex cost functions (as we can precompute costs and pass
them to our IP via the c;;, parameters in (2a)); (iii) it allows
users to customize the set of feasible actions; (iv) it can
quickly recover a globally optimal solution or certify that
actionable recourse does not exist. The main shortcoming of
this approach is that it requires discretizing changes to real-
valued features. To ensure discretization does not affect the
cost or feasibility of recourse, we must therefore discretize
the actions for such features over a suitably fine grid.

3.1. IP Formulation

Our IP has the form:
min cost
d mj
s.t. cost = Z Z CjkVjk (2a)
j=1k=1
d d
> wja; > Y wya (2b)
j=1 j=0
mj
a; = Zajkvjk j=1.d (2¢)
k=1
'ﬂlj
L=+ > vk j=1.d (2d)
k=1
a; €R j=1.d
Uj, Vjk € {O, 1} j=1l.d k=1.m;

Here, constraint (2a) sets the cost of a feasible action via the
precomputed cost parameters c;; = cost(z; + aji; x;).
Constraint (2b) ensures that any feasible action will flip the
prediction of a linear classifier with coefficients w. Con-
straints (2c¢) and (2d) restrict a; to a grid of m; + 1 feasible
values a; € {0,a;1...a;m,} via the indicator variables
U; = 1[aj = 0] and Vjk = l[aj = ajk}.

Customization: We can customize the feasible action set
by adding logical constraints to (2). Many such constraints
can be expressed with the u; indicators. To limit actions to
change < R features, we can add the constraint Z?Zl (1-
u;j) < R. To ensure actions only change feature p or ¢ not
both, we can add the constraint (1 — u,) + (1 —uq) < 1.

Speedups: Although modern IP solvers can quickly solve
instances of (2) (< 1s with CPLEX 12.8), we can further
reduce the solution time (i.e. for auditing procedures) by:
(i) dropping constraints (2c) and (2d) for non-actionable
features; (ii) dropping v, indicators for actions a, that do
not agree in sign with wy; (iii) declaring {v;1 ... vjm, } as a

special ordered set, which allows the solver to use a more
efficient branch-and-bound algorithm for these variables.

3.2. Building Flipsets

The optimal solution to (2) can be used to create the first
item in a flipset (i.e., by listing the values of z; and z; + aj
for all j such that a} # 0). In order to effectively provide an
individual with recourse, however, a flipset should contain
multiple items. This is because each item may be infeasible
in a way that is only known to the individual.

To build a flipset with multiple items, we use an enumer-
ation procedure that repeatedly solves (2). Our proposed
procedure recovers 1' > 2 actions that use distinct sub-
sets of features by repeating the following steps 7 times:
(i) solve (2); (ii) use the optimal action a* to add a new
item to flipset; (iii) add a constraint to eliminate the active
set of changes S = {j : aj # 0} from the feasible set

Djes(I—uj) +> agu; <d—1.

3.3. Choosing a Cost Function

While users can design their own cost functions, we pro-
pose two generic functions for auditing and building flipsets.
Both functions measure costs using the percentiles of x; and
xj + a; in the target population; that is, Q;(z; + a;) and
Qj(x;) where Q;(-) is the CDF of x; . This standardizes
the cost of changes across features and ensures that costs
reflect the distribution of features in the target population.

For auditing applications, we propose optimizing the maxi-
mum percentile shift

cost(x + a; ) = max |Q;(z; + a;) — Q5(z5). G)

Our choice is motivated by the interpretation of the optimal
cost under (3). If the optimal cost is 0.25, for example, then
this means that all feasible action must change a feature by
at least 25 percentiles (i.e., no feasible action can flip the pre-
diction without changing a feature by < 25 percentiles). To
use (3), one must replace constraint (2a) with the constraints
cost > Z;n:’l ¢k for j = 1..d.

For building flipsets, we propose optimizing the total log-
percentile shift:

cost(x + a;x) =

In this case, our choice aims to select items that may reflect
“easy” changes with respect to the target population. In
particular, (4) ensures that the cost that changing feature j
by a; increases exponentially as @ ;(z;) — 1. This captures
the notion that changes become harder at higher percentiles
(e.g., changing income from percentiles 50 — 55 is easier
than 90 — 95).
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4. Demonstration

We now demonstrate how our tools could be used to audit
the recourse of linear classifiers in a hypothetical credit
scoring problem. We provide a software implementation of
our tools and scripts to reproduce the analysis in this section
at http://github.com/ustunb/actionable-recourse.

Setup

Data: We consider a processed version of credit dataset
from the UCI Repository (Yeh & Lien, 2009). Here, y; =
—1 if person ¢ will default on an upcoming credit card
payment. Our dataset contains 7 = 30 000 individuals and
d = 16 features related to spending and payment patterns,
education, credit history, age, and marital status. We assume
spending and payment patterns and education are actionable,
and consider all other variables to be immutable.

Model Training and Auditing: We train /1 -penalized logistic
regression (LR) models for values of the /1 -penalty in the set
{1,2,5, 10,20, 50, 100, 500, 1000} and estimate their test
error via stratified 10-fold CV. We audit the recourse of each
classifier using the training data as our target sample by solv-
ing (2) for each individual 7 such that §; = —1. Our IP uses
the cost function in (3) and include the following constraints
to ensure changes are actionable: (i) changes for discrete
features must be discrete (e.g. MonthsWithLowSpendinglIn-
Past6Months € {0,1...6}); (ii) EducationLevel can only
increase; (iii) immutable features cannot change.

Results

We summarize our audit in Figure 3 and present a flipset for
an individual who was denied credit in 2.

As shown, tuning the ¢ -penalty has a minor effect on test
error, but significantly affects the cost and feasibility of
recourse. Here, classifiers with small ¢;-penalties provide
all individuals with recourse. As the /1-penalty increases,
however, the % of individuals with recourse falls as the co-
efficients for actionable features are more heavily penalized
in comparison to those for immutable features. Among the
individuals who retain recourse, we observe that increasing
the ¢ -penalty almost doubles the median cost of recourse
from 0.20 to 0.39. Since we have used the cost function in
(3), a cost of ¢ implies an individual must change a feature
by at least ¢ percentiles to attain a desired outcome.

Our aim is not to suggest a relationship between recourse
and ¢, -regularization, but to show how seemingly innocu-
ous practices such as parameter tuning can impact the cost
and feasibility of recourse. Here, a practitioner who is pri-
marily interested in performance could deploy a classifier
that precludes individuals from achieving a desired outcome
(e.g., the one that minimizes mean 10-CV test error), even as

there exists a classifier that attains similar performance but
provides all individuals with recourse. Other practices that
affect recourse include preprocessing, using a more conser-
vative decision point, or evaluating recourse on a hold-out
set. In practice, it is unlikely that such practices can be
effectively regulated.

FEATURE SUBSET CURRENT VALUES REQUIRED VALUES

MostRecentPaymentAmount $0 — $790
MostRecentPaymentAmount $0 — $515
MonthsWithZeroBalanceOverLast6Months 1 — 2
MonthsWii Bal, OverL Month 1 — 4
MostRecentPaymentAmount $0 — $775
MonthsWithLowSpendingOverLast6Months 6 — 5
MostRecentPaymentAmount $0 — $500
MonthsWithLowSpendingOverLast6Months 6 — 5
—

MonthsWithZeroBalanceOverLast6Months 1 2

Figure 2. Flipset for a person who is denied credit by the most
accurate classifier. Each item describes a set of actionable minimal-
cost changes for the individual to attain the desired outcome. We
enumerated all 5 items in < 1 second using the cost function in 4
and the enumeration scheme in Section 3.2.
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Figure 3. Model performance and recourse over the training sam-
ple for ¢;1-penalized LR classifiers. We show the mean 10-CV
test error (top left), # of non-zero coefficients (top right), % of
individuals with recourse (bottom left), and the distribution of the
cost of recourse (bottom left) for all classifiers.

5. Discussion

We have presented a new approach to study recourse in
machine learning. Our approach allows regulators to certify
that a linear classifier provides actionable recourse within
a target population, and produce informative lists to help
individuals achieve a desired outcome. In future work, we
aim to extend our framework to audit non-linear classifiers
and derive out-of-sample guarantees for a classifier will
provide actionable recourse.
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