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Abstract
In domains such as medicine, it can be acceptable
for machine learning models to include sensitive
attributes such as gender and ethnicity. In this
work, we argue that when there is this kind of
treatment disparity then it should be in the best
interest of each group. Drawing on ethical prin-
ciples such as beneficence (“do the best”) and
non-maleficence (“do no harm”), we show how
to use sensitive attributes to train decoupled clas-
sifiers that satisfy preference guarantees. These
guarantees ensure the majority of individuals in
each group prefer their assigned classifier to (i) a
pooled model that ignores group membership (ra-
tionality), and (ii) the model assigned to any other
group (envy-freeness). We introduce a recursive
procedure that adaptively selects group attributes
for decoupling, and present formal conditions to
ensure preference guarantees in terms of general-
ization error. We validate the effectiveness of the
procedure on real-world datasets, showing that it
improves accuracy without violating preference
guarantees on test data.

1. Introduction
When machine learning systems are deployed in human-
facing applications (e.g., lending, hiring, medical decision
support), their performance may vary over groups defined
by sensitive attributes such as gender and ethnicity. Such
performance disparities are now regularly reported (Angwin
et al., 2016; Dastin, 2018), eliciting calls for fairness in
machine learning (Crawford, 2013), and prompting the de-
velopment of technical solutions (Zliobaite, 2015; Barocas
et al., 2018; Corbett-Davies & Goel, 2018).
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Many of the proposed methods for fair machine learning
have aimed to build models that predict or perform in the
same way across groups (e.g., Hardt et al., 2016; Zafar
et al., 2017a; Feldman et al., 2015; Zafar et al., 2017c;
Agarwal et al., 2018; Narasimhan, 2018). Such methods
can be broadly viewed as methods to achieve fairness by
parity (see Zafar et al., 2017b, for a discussion). Parity is
an appropriate notion of fairness for applications such as
hiring or sentencing, where a model that exhibits disparate
treatment or disparate impact may be viewed as a system
to perpetrate wrongful discrimination (see Arneson, 2006;
Hellman, 2008; Barocas & Selbst, 2016).

In comparison, less work has sought to articulate suitable
notions of fairness for domains with different ethical prin-
ciples (with some exceptions, see e.g., Chen et al., 2018).
In medical applications, for example, the relevant ethical
principles are beneficence (do the best in one’s ability) and
non-maleficence (do no harm) (see e.g., Beauchamp et al.,
2001). Accordingly, methods for fair machine learning
should be designed to produce the most accurate model
for each group (beneficence) without harming any group
(non-maleficence).

These goals represent new challenges for the fair use of sen-
sitive attributes in machine learning. Consider, for example,
training a medical diagnostic using a dataset with sensitive
attributes such as age, gender and ethnicity. In this case, a
model that ignores group membership may not be benef-
icent as it may impose inevitable performance trade-offs
between heterogeneous groups (see Figure 1). In practice,
heterogeneity may arise due to intrinsic differences between
groups, or discrepancies in the quality or amount of data.

While these issues motivate the need to build models that
explicitly consider group membership (see Corbett-Davies
et al., 2017; Lipton et al., 2018), it is not clear how to do
this in a way that is fair to each group. As shown in Figure
2, simple approaches such as a “one-hot encoding” may not
recover the most accurate model for each group. Conversely,
one could harm groups by fitting a model from a hypothesis
class that is overly complex (e.g., by overfitting), or that
one that cannot adequately capture the heterogeneity (e.g.,
by “gerrymandering” along intersectional subgroups as dis-
cussed in Kearns et al., 2018; Hébert-Johnson et al., 2018).
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GROUP A GROUP B POOLED

(x1, x2) n+ n− h∗A n+ n− h∗B n+ n− ĥ0

(0, 0) 50 101 - 100 50 + 150 151 -
(0, 1) 101 50 + 50 100 - 151 150 +
(1, 0) 101 50 + 50 100 - 151 150 +
(1, 1) 101 50 + 50 100 - 151 150 +

Figure 1. Training a pooled classifier that ignores group member-
ship may impose unavoidable trade-offs between groups. We are
given data from two groups z ∈ {A,B} with heterogeneous data
distributions P (y = +1|x, A) = P (y = −1|x, B). Here, n+

and n− denote the number of training examples with y = +1 and
y = −1. Decoupled training produces the best classifier for each
group ĥA = h∗A and ĥB = h∗B , both of which have an error rate
of 33%. In contrast, pooled training produces a classifier ĥ0 with
disparate impact due to a tyranny of the majority: the data contains
slightly more samples from A so that empirical risk minimization
outputs the best classifier for A which is the worst classifier for
B. Pooled training with a parity constraint such as equal accuracy
between A and B would fix the performance gap, but achieve
an error rate of 50% for each group, missing the opportunity to
provide better accuracy.

In this paper, we aim to use sensitive attributes in a way
that is aligned with the principles of beneficence and non-
maleficence. Towards beneficence, we make use of decou-
pled classifiers— i.e., train a classifier for each group using
data from that group. Decoupling is a simple technique that
will recover the most accurate model for each group in an
ideal setting where we are given unlimited data. In practice,
however, it must be used with care since it may harm groups
with insufficient data. Towards non-maleficence, we adopt
the use of preference guarantees, which are a variation on
those suggested by Zafar et al. (2017b). We require that
each group should prefer their assigned model to (i) a pooled
model that ignores group membership (rationality) and (ii)
the model assigned to any other group (envy-freeness).

In settings where individuals prefer more accurate models,
rationality and envy-freeness ensure that the majority of
individuals in each group would choose to report their sensi-
tive attributes if they were allowed to not report them (thus
opting for a pooled model) or to misreport them (thus opting
for the model assigned to another group).

The main contributions of this paper are:

• We present formal conditions for fair decoupling, i.e., that
the preference guarantees of rationality and envy-freeness
are satisfied. This is non-trivial because we require these
properties to hold with respect to generalization error.

• We develop a recursive partitioning procedure to train de-
coupled classifiers for groups specified by multiple sensi-
tive attributes without violating their preferences.

• We pair our procedure with an integer programming
method to train linear classifiers via 0-1 loss minimiza-
tion. This produces classifiers that satisfy preferences on

GROUP A

x1 n+ n− h∗A

0 50 0 -
1 0 50 +

GROUP B

x1 n+ n− h∗B

0 0 50 +
1 50 0 -

POOLED WITH z

(x1, z) n+ n− h∗0

(0,0) 0 50 +
(1,0) 50 0 -
(0,1) 50 0 -
(1,1) 0 50 +

Figure 2. A pooled classifier that encodes group membership may
not perform as well as a pair of decoupled classifier when we
fit classifiers from a hypothesis class that cannot represent the
heterogeneity between groups. Here, we consider training linear
classifiers using data from heterogeneous groups z ∈ {A,B}. A
linear classifier trained separately for each group has zero error.
However, there does not exist a linear, pooled classifier with zero
error due to the XOR structure.

training data and avoids pitfalls of surrogate loss minimiza-
tion in our setting.

• We present experiments on real-world datasets that show
that our procedure can output classifiers with good accu-
racy and that are responsive to preference guarantees.

Related Work We build on the work of Zafar et al.
(2017b), who present the preference-based notions of envy-
freeness, as well as preferred impact, which requires that
groups prefer their assigned classifier to a pooled classifier
trained with a parity constraint. Their method trains a linear
classifier for each group by solving a coupled empirical risk
minimization problem that enforces preferences with a con-
vex surrogate loss function. In our experiments, we show
that this approach may violate preference guarantees, even
on training data. In contrast, decoupled training via 0-1 loss
minimization immediately achieves preference guarantees
on training data (see Remark 1), and is developed here as
an adaptive procedure that ensures preferences on test data.

Our paper also builds on the work of Dwork et al. (2018),
who study decoupling as a way to achieve parity-based
notions of fairness. Their work presents impossibility results
to motivate decoupling (i.e., a bound on the maximum loss
of accuracy due to pooled training for different hypothesis
classes), as well as a computationally efficient procedure
to optimize a joint loss function on a set of classifiers (see
also Alabi et al., 2018). While their work does not consider
preference guarantees, it does caution that decoupling may
harm groups with insufficient data. They propose mitigating
the harm by transfer learning, but their experiments show
that this approach may still result in harm.

Our work is broadly related to several streams in the liter-
ature on fair machine learning. Our goals resemble those
of Chen et al. (2018), who present a beneficent approach
to reduce performance disparities between groups via data
collection. Our method aims to ensure preferences in terms
of generalization error (c.f. Woodworth et al., 2017; Cotter
et al., 2018) and among intersectional groups (c.f., Kearns
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et al., 2018; Hébert-Johnson et al., 2018). We allow data
distributions to vary between groups, sharing this motivation
with causal approaches (see e.g., Kusner et al., 2017; Nabi
& Shpitser, 2018; Zhang & Bareinboim, 2018; Salimi et al.,
2019). In addition to Zafar et al. (2017b) and Dwork et al.
(2018), several other works discuss treatment disparity to
achieve parity-based notions of fairness (see e.g., Corbett-
Davies & Goel, 2018; Kleinberg et al., 2018; Lipton et al.,
2018; Wang et al., 2019).

2. Problem Statement
We start with a dataset with n examples (xi, yi, zi)

n
i=1,

where each example consists of a feature vector xi =
[1, xi,1, . . . , xi,d] ∈ Rd+1, a label yi ∈ {±1}, and a vec-
tor of m group attributes zi = [zi,1, . . . , zi,m] ∈ Z (e.g.,
zi = [female, old]). We denote the indices of examples
in group z as Iz = {i |zi = z}, and let nz = |Iz|. Since
group attributes are categorical, Z partitions the data so that
∪z∈ZIz = {1, . . . , n} and Iz ∩ Iz′ = ∅ for all z, z′ ∈ Z.

We use the dataset to train a set of classifiers for each group,
which we denote as HZ = {ĥz}z∈Z . We assume that all
classifiers belong to the same hypothesis class hz ∈ H for
all z ∈ Z. Given a classifier h : Rd+1 → {±1}, we denote
its empirical risk (i.e., training error) and true risk (i.e.,
generalization error) for group z as

R̂z(h) =
1

nz

∑
i∈Iz

1yi 6=h(xi), Rz(h) = Ex,y|z
[
1y 6=h(x)

]
.

We define ĥz = argminh∈H R̂z(h).

Preference Guarantees In an ideal setting where we are
given sufficient data from each group, decoupling would
recover the most accurate classifier for each group: h∗z =
argminh∈HRz(h). In practice, decoupling cannot be ex-
pected to recover h∗z for each group given the lack of training
data. Nevertheless, it may uniformly improve the perfor-
mance for all groups with respect to a pooled classifier
ĥ0 = argminh∈H R̂(h) trained without sensitive attributes.

We stipulate that a set of decoupled classifiers HZ =
{ĥz}z∈Z should be deployed over a pooled classifier ĥ0

when they provide the following guarantees:

Rationality. A set of decoupled classifiers satisfies ratio-
nality if each group is assigned a model that is at least as
accurate as the pooled classifier: Rz(ĥz) ≤ Rz(ĥ0) for all
z ∈ Z.
Envy-freeness. A set of decoupled classifiers satisfies envy-
freeness if each group is assigned a classifier that is at
least as accurate as the classifiers assigned to other groups:
Rz(ĥz) ≤ Rz(ĥz′) for all z, z′ ∈ Z.

Note that both guarantees are defined in terms of true risk.

Rationality and envy-freeness follow without loss of gener-
ality when we recover the best model for each group. These
conditions also enshrine basic principles of fairness for how
we should use sensitive attributes in prediction. Specifically,
these guarantees ensure that the majority in each group
would choose their assigned model given a preference for
low generalization error. Without rationality, a majority in
some group would prefer the pooled model. Without envy-
freeness, a majority in some group would prefer the model
assigned to another group.

We evaluate the preference of group z between a pair of
classifiers, h and h′, using the preference gap measures:

∆̂z(h, h
′) = R̂z(h)− R̂z(h′) (1)

∆z(h, h
′) = Rz(h)−Rz(h′), (2)

We can measure preference gaps in terms of empirical risk
(1), but care about the preference gap in terms of true risk
(2). Thus, a set of decoupled classifiers HZ = {ĥz}z∈Z
satisfies rationality with respect to a pooled model ĥ0 if
∆z(ĥz, ĥ0) ≥ 0 for all z ∈ Z, and satisfies envy-freeness if
∆z(ĥz, ĥz′) ≥ 0 for all z, z′ ∈ Z.

Choosing Attributes for Decoupling Consider a case
where we train classifiers for groups specified by age and
gender. Ideally, we would train decoupled classifiers for
the most granular groups. However, this may not be feasi-
ble nor safe: we may have no data for some groups (e.g.,
young females), or we may train classifiers that violate ra-
tionality or envy-freeness. In such cases, it may be possible
to improve accuracy for all groups by decoupling along a
carefully chosen subset of group attributes.

We formalize this problem as follows. Given a set of m
atomic group attributes Z = Z1 × . . . × Zm, we allow
for decoupling along a subset of group attributes V . We
represent the assignment of decoupled classifiers to groups
as a tree T = (VT , HT ), where VT denotes a set of groups
and HT = {ĥv}v∈VT

denotes the set of classifiers train
using the data for each v ∈ VT (see Figure 3). Given a tree
T , we denote the assignment of classifiers from VT to the
groups in Z with an assignment function a(·) : Z → T.

Thus, ĥa(z) is the classifier assigned to group z by tree T .

We aim to find a set of decoupled classifiers that respects a
tree structure by solving the optimization problem:

min
T∈T (Z)

Φ(T )

s.t. ∆z(ĥa(z), ĥ0) ≥ 0 ∀z ∈ Z, (3a)
∆z(ĥa(z), ĥa(z′)) ≥ 0 ∀z, z′ ∈ Z. (3b)

Here, T (Z) is the set of all trees – i.e., all possible ways
to assign classifiers to groups specified by Z. Constraints
(3a) and (3b) require a set of decoupled classifiers to sat-
isfy rationality and envy-freeness. Φ(·) is a cost function to
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young oldyoung old

ĥ0

ĥ1 ĥ2

ĥ3

Figure 3. A set of decoupled classifiers assigned to 4 groups de-
fined by 2 sensitive attributes Z = (male, female)× (young, old).
Here, we train the classifiers HT = {ĥ1, ĥ2, ĥ3} using the data at
the leaves VT = {(young, male), (old, male), (female)}. The tree
structure ensures that decoupled classifiers are trained using the
data pertaining to groups with shared sensitive attributes.

choose between a set of decoupled classifiers with prefer-
ence guarantees.

Our decoupling procedure can handle any cost function, and
will strive to optimize cost only after it has found a tree
that does not violate preferences. Illustrative cost functions
include:

• Worst-Case Group Risk: maxz∈Z Rz(ĥa(z)), which re-
flects the worst error incurred by any group that is assigned
to its own classifier (see e.g., Hashimoto et al., 2018).

• Population Risk:
∑
z∈Z πzRz(ĥa(z)), which reflects the

aggregate generalization error over a population of interest.
Here, πz is the probability that an individual belongs to
group z. These weights can be set as πz = nz/n by
default, or used to correct for systematic sampling bias.

Atomic Groups vs. Assigned Groups Our definitions of
rationality and envy-freeness apply to the most granular
groups that can be specified by sensitive attributes – i.e.,
for the atomic groups z ∈ Z. This reflects a notion that
is robust against the possibility of “gerrymandering” along
sensitive attributes (see e.g., Kearns et al., 2018; Hébert-
Johnson et al., 2018). In settings where these guarantees are
too strong given the available data and the number of atomic
groups, one could also consider relaxing the definitions so
that preferences hold for only for the groups generated by
the decoupling procedure i.e., for each v ∈ VT . Although
our decoupling procedure can handle both settings, we adopt
the stronger definitions throughout our paper.

3. Preference Guarantees
In this section, we present formal conditions for decoupled
classifiers to satisfy preference guarantees.

We first observe that decoupled classifiers will satisfy ra-
tionality and envy-freeness on training data if we directly
minimize the error rate (i.e., via the 0-1 loss function).

Remark 1 A set of decoupled classifiers HZ = {ĥz}z∈Z ,
will satisfy rationality and envy-freeness on training data

∆̂z(ĥz, ĥ0) ≥ 0 and ∆̂z(ĥz, ĥz′) ≥ 0

for all z, z′ ∈ Z so long as ĥz ∈ argminh∈H R̂z(h) for
each z ∈ Z.

As shown in Figure 4, classifiers trained with a surrogate loss
function (as in Zafar et al., 2017b) do not provide such guar-
antees, and may not satisfy rationality and envy-freeness on
training data. Such violations can stem from a lack of data
for some groups, or the fact that surrogate losses may not be
robust to outliers (e.g., points belonging to a heterogeneous
subpopulation; Brooks, 2011; Nguyen & Sanner, 2013).

In Theorem 2, we present a sufficient condition for a set of
decoupled classifiers to satisfy rationality and envy-freeness
(see Appendix A for a proof).

Theorem 2 Given a set of decoupled classifiers HZ =
{ĥz}z∈Z , denote the minimal empirical preference gap of
group z as

ε̂z = min

(
∆̂z(ĥz, ĥ0), min

z′∈Z/{z}
∆̂z(ĥz, ĥz′)

)
.

Then HZ satisfies rationality and envy-freeness with proba-
bility at least 1− δ so long as the following conditions hold
for all groups z ∈ Z:

nz ≥
64 ln |H|+ 4 ln

(
2|Z|2
δ

)
ε̂2z

and ε̂z > 0.

Theorem 2 has several implications for decoupled training
in finite-sample settings:

• There exists a finite number of samples nz after which
decoupled classifiers satisfy rationality and envy-freeness.

• In finite-sample regimes, nz is fixed. Thus, we obtain
better guarantees by minimizing |H| while maximizing ε̂z.
This is why we train linear classifiers by optimizing the
0-1 loss.1

• In settings with a large number of groups (e.g. |Z| ≥ 10),
we require even more samples per group to provide prefer-
ence guarantees. This may motivate the need to consider
weaker preference guarantees that hold for the groups de-
termined by our decoupling procedure (see Section 2).

1The bound in Theorem 2 is for a finite hypothesis class H.
However, an analogous bound can be derived by replacing |H|
with a term based on the VC-dimension.
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4. Training Decoupled Classifiers
In this section, we present a recursive procedure to train
decoupled classifiers with preferences guarantees. Our pro-
cedure resembles decision tree methods in that it grows a
tree with training data before pruning it with test data. In
particular, our procedure:

• Uses a specialized routine to grow the tree, which gener-
ates a collection of “candidate” classifier sets that satisfy
rationality and envy-freeness on the training data;

• Uses a specialized routine to prune the tree, which discards
candidate classifier sets that violate rationality and envy-
freeness in terms of generalization error.

We pair our procedure with an integer programming method
to train linear classifiers by directly minimizing the 0-1 loss,
which has several benefits in this setting.

4.1. Routine to Grow the Tree

We present the routine to grow our tree in Algorithm 4.1.
Our routine induces a tree such as in Figure 3 by recursively
spitting the training data, and training classifiers for the
groups specified at each leaf node. Starting with the root
node ĥ0, which corresponds to {∅}, each iteration aims to
replace a classifier at a leaf node with a set of decoupled
classifiers {ĥs}s∈S where S ∈ {Z1, Z2, . . . , Zm}.

In Algorithm 4.1, we describe this process as a search over
feasible splits. Each split represents a distinct way to grow
the tree, and is uniquely specified by a group attribute S that
can be used for decoupling at a leaf node v ∈ VT . Our rou-
tine considers all possible ways to grow the tree T . For each
leaf v ∈ VT , it calls the function FeasibleSplits(T, v, Z)
to return all attributes S that: (i) have not already been used
to decouple at v; and (ii) obey a user-specified sample size
requirement.2 For each S ∈ FeasibleSplits(T, v, Z), the
routine trains a set of decoupled classifiers using the data at
the leaf node v.

Once the routine has trained decoupled classifiers for all
feasible splits, it chooses a split. For each S, it consid-
ers the tree Tv,S produced by switching the pooled clas-
sifier at v with a set of classifiers for each s ∈ S. The
routine assigns a score to each Tv,S using the function
ViolationScore(Tv,S), which reflects the probability that
the classifiers assigned by Tv,S violate preferences. For-
mally, ViolationScore(T ) is a bound on the probability
that a classifier assigned by T violates rationality or envy-

2For example, one may require any feasible S to satisfy the
following conditions for each group s ∈ S: (i) contain at least
1 sample with each label; (ii) contain at least ns ≥ d samples,
where d is the number of variables. These are minimal conditions
to ensure that we will not train a classifier that is linearly separable
by default, or one that will trivially predict the majority class.

freeness (see Appendix B).

P
(
HT violates
rationality or
envy-freeness

)
≤ ViolationScore(T )

=
∑
z∈Z

4 exp
(
−nz

2 · ∆̂z(ĥa(z), ĥ0)
2
)

+

∑
z∈Z

∑
z′∈Z

a(z′)6=a(z)

4 exp
(
−nz

2 · ∆̂z(ĥa(z), ĥa(z′))
2
)

Algorithm 1 Recursive Decoupling

1: T ← (ĥ0, {∅})
2: repeat
3: T ← []
4: for v ∈ VT do
5: for S ∈ FeasibleSplits(T, v, Z) do
6: Tv,S ← Decouple(T, v, S)
7: add Tv,S to T
8: end for
9: end for

10: if |T | ≥ 1 then
11: T ← argminT∈T ViolationScore(T )
12: end if
13: until T is empty

14: procedure Decouple(T, v, S)
replace the pooled classifier at v with a set of decoupled
classifiers for each s ∈ S

15: for s ∈ S do
16: ĥs ← argmin R̂v∧s(h) . fit model for i ∈ Iv ∩ Is
17: end for
18: V ′ ← (VT \ {v}) ∪ S
19: H ′ ← (H \ {ĥv}) ∪ {ĥs}s∈S
20: return T ′ = (H ′, V ′)
21: end procedure

4.2. Routine to Prune the Tree

We produce a collection of “candidate trees” by recording
the tree at each iteration of Algorithm 4.1. We evaluate the
rationality and envy-freeness of the classifiers assigned by
each candidate tree using a hypothesis test on a hold-out
dataset. We use an exact version of the McNemar test, which
is commonly used to test for differences in the generalization
error of classifiers (see e.g., Dietterich, 1998).

Given two classifiers h and h′, we evaluate the preference
of group z between h and h′ for group z by testing:

H0 : Rz(h) ≤ Rz(h′) vs. HA : Rz(h) > Rz(h
′)

Here, the null hypothesis H0 assumes that group z prefers
h to h′ by default. Thus, we reject H0 when there is enough
evidence to support a preference violation for group z in the
hold-out data.
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Given a tree with VT leaves, we check the rationality and
envy-freeness between groups using |Z| + |Z|(|VT | − 1)
McNemar tests: |Z| tests comparing the error of each group
z between their assigned classifier ĥa(z) and the pooled
classifier; and |Z|(|VT | − 1) tests comparing the error of
group z between their assigned classifier ĥa(z) and any other
classifier. We control the false discovery rate due to multiple
testing using a standard Bonferroni correction (Dunn, 1961),
which is suitable even for non-independent tests.3

We discard any tree that fails at least one test at a user-
defined significance level. The remaining trees satisfy pref-
erences on the hold-out data subject to a user-specified limit
on type I error (i.e., a limit on the probability that the test
incorrectly detects a preference violation that does not exist).
Given the collection of remaining candidate trees, we then
choose the tree that minimizes the cost function.

Our setup assumes rationality and envy-freeness by default,
and only discards candidate trees if there is enough evi-
dence to support a preference violation. In effect, this is
an optimistic viewpoint, which we find justified given that
the classifiers satisfy rationality and envy-freeness on the
training data (since we will optimize the 0-1 loss).4

4.3. Direct Loss Minimization

Our procedure can be paired with any binary classification
algorithm. Considering the results in Section 3, however,
we pair it with a method to train linear classifiers by directly
minimizing the 0-1 loss function. This has two important
benefits in our setting:

• It produces a set of decoupled classifiers that are rational
and envy-free on the training data (see Remark 1), which
is not necessarily the case when we train classifiers by
optimizing a surrogate loss function.

• Since 0-1 loss minimization satisfies rationality and envy-
freeness on the training data, it ensures that our procedure
will keep decoupling until it has grown a tree that assigns
a classifier to each group z ∈ Z. This provides some
protection against gerrymandering, in that the procedure
will always consider assigning each group its own classi-
fier, and only assign a classifier to multiple groups if this
assignment violates preferences or does not optimize costs.

We train a linear classifier h(x) = w>x that optimizes the
0-1 loss function by solving the MIP formulation:

3We cannot assume independence between the tests since we
use the same hold-out set.

4Alternatively, one could use an inverted test where H0 :
Rz(h

′) ≥ Rz(h
′). This setup would reject H0 only when there is

sufficient evidence to support decoupling, which may be suitable
for settings where, for example, we can assume that the data for
each group is drawn from the same joint distribution.

min

n∑
i=0

li

s.t. Mili≥ yi(γ −
d∑

j=0

wjxij) i = 1,...,n (4a)

1= li + li′ (i, i′) ∈ K (4b)
wj =w+

j + w−j j = 0,...,d

1=

d∑
j=0

(w+
j − w

−
j ) (4c)

li ∈ {0, 1} i = 1,...,n
wj ∈ [−1, 1] j = 0,...,d
w+

j ∈ [0, 1] j = 0,...,d
w−j ∈ [−1, 0] j = 0,...,d

Here, constraints (4a) set the mistake indicators li ←
1[h(xi) 6= yi]. These constraints depend a margin param-
eter γ, which should be set to a small positive number
(e.g., 10−4), as well as “Big-M” parameters Mi, which
can be bounded since we have fixed ‖w‖1 = 1 in constraint
(4c). Constraint (4b) produces an improved lower bound by
encoding the necessary condition that any classifier must
make exactly one mistake for two points (i, i′) ∈ K with
identical features xi = xi′ but conflicting labels. Here,
K = {(i, i′) : xi = xi′ , yi = +1, yi′ = −1} is the set of
points with conflicting labels.

While direct loss minimization is computationally in-
tractable in the worst-case, it is often feasible through the
use of modern integer programming tools (see e.g, Ustun
& Rudin, 2016; Zeng et al., 2017). In our experiments in
Section 5, we often train classifiers to optimality in minutes
(see Table 1 for problem sizes). Algorithm 4.1 also provides
several ways to reduce computation. For example, we can
speed up the DECOUPLE procedure by using the pooled
classifier to initialize training for each decoupled classifier
(since the pooled classifier is a feasible solution to the MIP,
this initializes the solver with an improved upper bound).

5. Experiments
We now present experiments that compare different
methods to train classifiers with preference guaran-
tees. We provide software to reproduce our results at
https://www.github.com/ustunb/dcptree.

Setup We work with five datasets, each of which have
multiple sensitive attributes, as shown in Table 1.5 We pro-

5The datasets include: adult, the Adult dataset from the UCI
ML Repository (Lichman, 2013); arrest and violent, the COM-
PAS recidivism dataset for arrest and violent crime (Angwin et al.,
2016); apnea, a dataset to diagnose obstructive sleep apnea (Ustun
et al., 2016); and cancer, a dataset to diagnose lung cancer (Na-
tional Lung Screening Trial Research Team, 2011).

https://www.github.com/ustunb/dcptree
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cess each dataset to define groups with a minimum number
of samples and repair class imbalances at the group level.

We train linear classifiers using the following methods:

• LR: Decoupled logistic regression.

• DCCP: The coupled convex-concave programming ap-
proach of Zafar et al. (2017b).

• TREE01 & TREELR: Our procedure paired with 0-1 loss
minimization and logistic regression, respectively. We al-
locate a third of the training data to the pruning procedure,
and discard trees that violate rationality or envy-freeness
at a significance level of 10%. The final tree minimizes
the worst-case group risk (see Section 2).

We evaluate the performance and preferences of all classi-
fiers for the atomic groups Z on a test set containing 25% of
examples. Since LR and DCCP cannot decouple adaptively
along sensitive attributes, we test them in two regimes: (i)
train separate models for groups defined by one attribute;
(ii) train separate models for groups defined by all attributes.
Since there are multiple attributes that can be used in regime
(i), we train classifiers for each attribute, and show results
for the one that optimizes overall test accuracy in Table 1.

Results We present an overview of the performance for
each method in Table 1. We report the following metrics:

• # of violations: the # of groups for which rationality
is violated plus the # of pairwise comparisons between
groups for which envy-freeness is violated. We evaluate
each violation on the test data with a McNemar test at a
10% significance level.

• max gain: the maximum difference in accuracy between
the pooled classifier and the decoupled classifier among
all groups, maxz∈Z ∆z(ĥz, ĥ0).

• min envy: the maximum difference in the degree of envy-
freeness between groups, maxz,z′∈Z ∆z(ĥz, ĥz′).

• ∆ disparity: the disparity under the decoupled models mi-
nus the disparity under the pooled model, where disparity
is measured as the maximum difference in the accuracy
of any two groups.

We discuss key properties of our procedure with respect to
the preference violations that can also be seen in Figure 4:

• Our approach produces classifiers that satisfy preference
guarantees on training data and – almost always – test data.
In particular, TREE01 achieves the smallest number of
preference violations on test data across all datasets.

• When there exists a way to improve accuracy without
harming groups, our approach tends to provide the largest
possible improvement to each group (see e.g., apnea, de-
coupling has a max gain of 30.8%).

ONE ATTRIBUTE ALL ATTRIBUTES ADAPTIVE

Dataset Metrics DCCP LR DCCP LR TREELR TREE01

adult

m = 12
n = 49, 440
d = 28

# violations
max gain
min envy
∆ disparity
# models

2
2.9%
2.9%
0.8%

2

1
2.9%
2.9%
0.6%

2

3
12.6%
26.1%
0.3%

12

1
17.6%
33.3%
0.4%

12

1
4.1%
11.8%
-0.4%

7

0
10.0%
30.2%
1.9%

9

apnea

m = 6
n = 3, 016
d = 28

# violations
max gain
min envy
∆ disparity
# models

0
2.3%
5.4%
-3.6%

2

0
1.2%
7.7%
-3.2%

2

0
11.0%
21.2%
7.1%

6

0
13.7%
31.5%
12.5%

6

0
8.9%
21.2%
7.6%

4

0
30.8%
30.8%
-6.8%

2

arrest

m = 6
n = 7, 168
d = 7

# violations
max gain
min envy
∆ disparity
# models

0
9.0%
9.0%
-0.1%

2

0
7.7%
7.7%
-0.1%

2

2
10.3%
14.1%
-0.3%

6

3
11.5%
15.4%
1.0%

6

1
9.0%
12.8%
-2.7%

4

0
2.2%
3.3%
-2.6%

2

cancer

m = 4
n = 62, 916
d = 20

# violations
max gain
min envy
∆ disparity
# models

1
0.4%
3.4%
1.0%

2

2
0.4%
1.8%
0.3%

2

1
0.9%
2.1%
-0.4%

4

1
1.0%
3.9%
0.0%

4

1
1.1%
3.8%
1.5%

2

0
2.8%
10.4%
0.8%

4

violent

m = 6
n = 10, 960
d = 7

# violations
max gain
min envy
∆ disparity
# models

1
9.3%
7.6%
-9.7%

2

1
11.6%
10.2%
-4.1%

2

1
13.6%
17.9%
-13.6%

6

0
13.6%
17.0%
-14.0%

6

2
9.3%
7.6%
-9.8%

2

0
14.4%
22.0%
-8.4%

6

Table 1. Performance metrics for all methods on all datasets. We
highlight methods that violate preferences in red and methods that
satisfy preferences in green. Here, # models is the number of
distinct classifiers assigned to the m = |Z| atomic groups.

• The use of surrogate loss for the coupled training procedure
of Zafar et al. (2017b) may produce classifiers that violate
preferences, even on training data. Such violations can
occur when groups contain too few training samples or
when the data for one group contains outliers (e.g., data
corresponding to a heterogeneous subpopulation).

• Decoupling along one sensitive attribute may lead to pref-
erence violations along smaller groups – highlighting the
potential to achieve preference-based notions of fairness
by “gerrymandering.” Our approach has two benefits in
this setting: (i) it provides a way to uniformly improve
performance by assigning classifiers to “coarser” groups
in a way that satisfies preference guarantees on atomic
groups; (ii) it will always evaluate the feasibility of assign-
ing each group its own classifier, and only resorts to the
former option when there exists a better way that does not
violate the preferences of atomic groups.

• Decoupling can occasionally lead to uniform improve-
ments for all groups (see e.g., LR on apnea). We find that
standard measures of error (e.g., aggregate test error) do
not vary much across methods. However, there may be
considerably larger changes for small groups. Our pref-
erence guarantees aim to ensure that decoupling benefits
all groups without harming any group. As a result the
disparities between groups may increase (or decrease), but
in a way that is unlikely to lead to harm.
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Figure 4. Envy-freeness gaps for decoupled classifiers trained on the adult dataset. The dataset contains m = 12 groups defined by 3
attributes (gender, immigrant, marital status). We compare decoupled classifiers produced using our approach (right) to those built
using DCCP. Since DCCP cannot decouple adaptively, we consider decoupling with a single binary attribute (gender) (left) and with all
attributes (middle). For each method, we show how the accuracy for each group (y-axis) changes when they swap their assigned classifier
with a classifier assigned to a different group (x-axis). We highlight cells based on the p-value of an envy-freeness violation, so that
statistically significant violations appear in red. We observe: (i) our approach trains 9 decoupled classifiers that satisfy preferences for all
12 groups on training data and test data; (ii) DCCP with all attributes violates collective preferences on training data and test data; (iii)
DCCP with one attribute leads to “gerrymandering” as envy-freeness is violated among the atomic groups.

6. Discussion
There are many domains where machine learning is used,
sensitive attributes are readily collected, and it is legal to
use them in prediction. In applications where groups benefit
from improved accuracy, the principles of beneficence and
non-maleficence suggest that we should aim to use sensitive
attributes in a way that allows us to train the most accurate
model for each group without harming any group.

We believe that attaining improved accuracy subject to these
preference guarantees represents an important direction for
future research in fair machine learning given growing calls
for such methods in medicine (see e.g., Ferryman & Pitcan,
2018; Popejoy & Fullerton, 2016; Vayena et al., 2018; Chen
et al., 2019). While parity-based methods are appropriate for
some settings (e.g., risk adjustment formulas for healthcare
spending as in Zink & Rose, 2019), they may be not be

suitable for others due to their lack of beneficence (see e.g.,
Figure 1), and their potential to harm groups to achieve
parity (see e.g., Lipton et al., 2018; Hu & Chen, 2019).

Our work highlights an important role for the preference
guarantees of rationality and envy-freeness in such appli-
cations — i.e., as a set of formal criteria to ensure the fair
use of sensitive attributes in prediction. In applications
where treatment disparity may be legal, rationality and envy-
freeness ensure that practitioners make use of sensitive at-
tributes in a way that is aligned with the collective interests
of each group. Specifically, they ensure that a majority of
individuals in each group would opt for their assigned model
rather than a model trained without sensitive attributes, or
the model that would be assigned if they had changed or
misreported group membership.
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A. Proof of Theorem 2
In what follows, we present proofs of Theorem 2. We start a simple sufficient condition to ensure that a group prefers
classifier h to another classifier h′. We will make use of this result to prove Theorem 2, and to design the score function for
our decoupling procedure in Appendix B.

Lemma 3 (Generalization of Preferences) Consider evaluating the true risk of two classifiers h and h′ over group z.
Given classifiers satisfy ∆̂z(h, h

′) > 0, then ∆z(h, h
′) > 0 with probability at least 1− δ for any δ ∈ (0, 1] if

4R(H) +

√
2 ln 2

δ

nz
≤ ∆̂z(h, h

′), (5)

where R(H) is the Rademacher complexity of the hypothesis classH.

Proof 1 For any group z ∈ Z and any classifier h ∈ H with probability at least 1− δ/2, we have that

∣∣R̂z(h)−Rz(h)
∣∣ ≤ 2R(H) +

√
ln 2

δ

2nz
. (6)

The bound in (6) holds for both h and h′ with probability at least 1− δ. Thus, we know that:

Rz(h
′)−Rz(h) =(Rz(h

′)− R̂z(h′)) + (R̂z(h))−Rz(h)) + R̂z(h
′)− R̂z(h)

≥−

2R(H) +

√
ln 2

δ

2nz

−
2R(H) +

√
ln 2

δ

2nz

+ ∆̂z(h, h
′)

=−

4R(H) +

√
2 ln 2

δ

nz

+ ∆̂z(h, h
′)

≥0,

if the condition specified in (5) holds.

We can make use of Lemma 3 to produce the following bounds on the generalization of rationality and envy-freeness. 6

Corollary 4 (Generalization of Rationality) Given a set of decoupled classifiers HZ = {ĥz}z∈Z such that

∆̂z(ĥz, ĥ0) > 0 for all z ∈ Z,

HZ satisfies rationality with respect the pooled classifier ĥ0 with probability at least 1− δ, if for all groups z ∈ Z:

4R(H) +

√
2

nz
ln

(
2|Z|
δ

)
≤ ∆̂z(ĥz, ĥ0),

Corollary 5 (Generalization of Envy-freeness) Given a set of decoupled classifiers HZ = {ĥz}z∈Z such that

∆̂z(ĥz, ĥz′) > 0 for all z, z′ ∈ Z,

HZ satisfies envy-freeness with probability at least 1− δ if, for all pairs of groups z, z′ ∈ Z:

4R(H) +

√
2

nz
ln

(
|Z|2
δ

)
≤ ∆̂z(ĥz, ĥz′).

6For the sake of clarity, we will consider a setting where each group is assigned its own classifier so that a(z) = z for each z 6= z′.
Similar results can be derived for a setting where a single classifier can be assigned to multiple groups (see e.g., Appendix B).
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Both results follow from repeated applications of Lemma 2. Specifically:

• Rationality requires that the pairwise preferences in Lemma 2 hold for all groups z ∈ Z. This involves preference
conditions for |Z| pairs of classifiers – i.e., one for each distinct pair ĥz, ĥ0 where z ∈ Z. Thus, we can ensure that
rationality holds with probability at least 1− δ by applying Lemma 2 with probability at least 1− δ

|Z| .

• Envy-freeness requires that the pairwise preferences in Lemma 2 hold for all pairs of groups z, z′ ∈ Z. This involves
preference conditions on |Z|(|Z| − 1)/2 pairs of classifiers – i.e., one for each distinct pair ĥz, ĥz′ where z, z′ ∈ Z. Since
there are |Z|(|Z| − 1)/2 pairs, and that |Z|(|Z| − 1)/2 ≤ |Z|2/2, we can ensure that envy-freeness hold with probability
at least 1− δ by applying Lemma 2 with probability at least δ

|Z|2/2 .

We are now ready to prove Theorem 2.

Proof 2 (Theorem 2) Using Massart’s Lemma, we have that:

R(H) ≤

√
2 log |H|
nz

(7)

Combining the bound on R(H) in (7) with the bound in Corollary 4, we have that HZ satisfies rationality with probability
at least 1− δ, if for all z ∈ Z,

nz ≥
64 ln |H|+ 4 ln

(
2|Z|
δ

)
∆̂z(ĥz, ĥ0)2

(8)

Likewise, combining the bound on R(H) in (7) with the bound in Corollary 5, we have that HZ satisfies envy-freeness with
probability at least 1− δ if for all z ∈ Z,

nz ≥
64 ln |H|+ 4 ln

(
|Z|2
δ

)
∆̂z(ĥz, ĥz′)2

. (9)

Given the bounds in (8) and (9), we can see that HZ satisfies both rationality and envy-freeness with probability at least
1− δ if for all z ∈ Z,

nz ≥ max

64 ln |H|+ 4 ln
(

2|Z|
δ

)
∆̂z(ĥz, ĥ0)2

,
64 ln |H|+ 4 ln

(
|Z|2
δ

)
∆̂z(ĥz, ĥz′)2

 (10)

Thus, the bound in Theorem 2 holds so long as we can show that:

64 ln |H|+ 4 ln( 2|Z|2
δ )

ε̂2z
≥ max

64 ln |H|+ 4 ln
(

2|Z|
δ

)
∆̂z(ĥz, ĥ0)2

,
64 ln |H|+ 4 ln

(
|Z|2
δ

)
∆̂z(ĥz, ĥz′)2

 (11)

This follows given that we have defined ε̂z = min
(

∆̂z(ĥz, ĥ0),minz′∈Z/{z} ∆̂z(ĥz, ĥz′)
)

, and that the inequality

4 ln
(
|Z|2
δ

)
≥ 4 ln

(
2|Z|
δ

)
holds whenever |Z| ≥ 2.
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B. Score Function
In what follows, we formally derive the score function that we present in Section 4. The score function ensures that our
procedure grows a tree in a way that is aligned with the goal of minimizing the risk of a preference violation.

We wish to bound the probability that HT violates rationality or envy-freeness as follows:

P
(
HT violates
rationality or
envy-freeness

)
≤ ViolationScore(T ) =

∑
z∈Z

4 exp
(
−nz

2 · ∆̂z(ĥz, ĥ0)
2
)

+
∑
z∈Z

∑
z′∈Z

a(z′) 6=a(z)

4 exp
(
−nz

2 · ∆̂z(ĥz, ĥz′)
2
)

We restrict our attention to cases where ∆̂z(z, z
′) > 0 since our training procedure ensures that ∆̂z(z, z

′) ≥ 0, and since
∆̂z(z, z

′) = 0 implies indifference (i.e., it does not imply a preference violation).

Given a pair groups z, z′ ∈ Z such that a(z) 6= a(z′), we denote an event where group z prefers the classifier assigned to
group z′ as Ez→z′ .. We will bound the probability of Ez→z′ in terms of the following event:

Ez,z′ =

{
|Rz(ĥz)− R̂z(ĥz)| ≥

∆̂z(ĥz, ĥz′)

2

}
∪

{
|Rz(ĥz′)− R̂z(ĥz′)| ≥

∆̂z(ĥz, ĥz′)

2

}
We observe that Ez→z′ ⊆ Ez,z′ . We proceed to present a proof by contradiction. Suppose that Ez→z′ 6⊆ Ez,z′ , this means
that there must exist an event ω ∈ Ez→z′ such that ω /∈ Ez,z′ . The fact that ω /∈ Ez,z′ implies that both of the following
inequalities must hold:

|Rz(ĥz)− R̂z(ĥz)| <
∆̂z(ĥz, ĥz′)

2

|Rz(ĥz′)− R̂z(ĥz′)| <
∆̂z(ĥz, ĥz′)

2

This implies:

Rz(ĥz)−Rz(ĥz′) = (Rz(ĥz)− R̂z(ĥz)) + (R̂z(ĥz)− R̂z(ĥz′)) + (R̂z(ĥz′)−Rz(ĥz′))

<
∆̂z(ĥz, ĥz′)

2
− ∆̂z(ĥz, ĥz′) +

∆̂z(ĥz, ĥz′)

2
= 0.

Thus, we have shown that z does not envy z′, which contradicts the fact that ω ∈ Ez→z′ .

Having shown that Ez→z′ ⊆ Ez,z′ , we can bound the probability of an envy-freeness violation as follows:

P
(
∪z,z′Ez→z′

)
≤ P (∪z,z′Ez,z′) (12)

≤
∑
z,z′∈Z

a(z)6=a(z′)

P (Ez,z′) (13)

≤
∑
z,z′∈Z

a(z)6=a(z′)

P
(
|Rz(ĥz)− R̂z(ĥz)| ≥ ∆̂z(ĥz,ĥz′ )

2

)
+ P

(
|Rz(ĥz′)− R̂z(ĥz′)| ≥ ∆̂z(ĥz,ĥz′ )

2

)
(14)

≤
∑
z,z′∈Z

a(z)6=a(z′)

2 exp

−2nz

(
∆̂z(ĥz, ĥz′)

2

)2
+ 2 exp

−2nz

(
∆̂z(ĥz, ĥz′)

2

)2
 (15)

=
∑
z,z′∈Z

a(z)6=a(z′)

4 exp
(
−nz

2
· ∆̂z(ĥz, ĥz′)

2
)

(16)

Here: (12) follows from the fact that Ez→z′ ⊆ Ez,z′ ; (13) and (14) follow from the union bound; and (15) follows from
inverting the bound.



Decoupled Classifiers with Preference Guarantees

We bound the probability of a rationality violation in a similar manner. We first define the following event for each z ∈ Z:

Ez,0 =

{
|Rz(ĥz)− R̂z(ĥz)| ≥

∆̂z(ĥz, ĥ0)

2

}
∪

{
|Rz(ĥ0)− R̂z(ĥ0)| ≥ ∆̂z(ĥz, ĥ0)

2

}

We note that Ez→0 ⊆ Ez,0, which can be shown by deriving an analogous contradiction to the one derived for envy-freeness.
With this result, we can bound the probability of an rationality violation as follows:

P (∪z∈ZEz→0) ≤ P (∪zEz,0) (17)

≤
∑
z∈Z

P (Ez,0) (18)

≤
∑
z∈Z

P
(

(|Rz(ĥz)− R̂z(ĥz)| ≥ ∆̂z(ĥz,ĥ0)
2

)
+ P

(
|Rz(ĥ0)− R̂z(ĥ0)| ≥ ∆̂z(ĥz,ĥ0)

2

)
(19)

≤
∑
z∈Z

2 exp

−2nz

(
∆̂z(ĥz, ĥ0)

2

)2
+ 2 exp

−2nz

(
∆̂z(ĥz, ĥ0)

2

)2
 (20)

=
∑
z∈Z

4 exp
(
−nz

2
· ∆̂z(ĥz, ĥ0)2

)
(21)

Here: (17) follows from the fact that Ez→0 ⊆ Ez,0; (18) and (19) follow from the union bound; and (20) follows from
inverting the bound. Our final expression for the score function is obtained by combining the terms in (16) and (21).


