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IMPORTANCE Continuous electroencephalography (EEG) use in critically ill patients is
expanding. There is no validated method to combine risk factors and guide clinicians in
assessing seizure risk.

OBJECTIVE To use seizure risk factors from EEG and clinical history to create a simple scoring
system associated with the probability of seizures in patients with acute illness.

DESIGN, SETTING, AND PARTICIPANTS We used a prospective multicenter (Emory University
Hospital, Brigham and Women’s Hospital, and Yale University Hospital) database containing
clinical and electrographic variables on 5427 continuous EEG sessions from eligible patients if
they had continuous EEG for clinical indications, excluding epilepsy monitoring unit
admissions. We created a scoring system model to estimate seizure risk in acutely ill patients
undergoing continuous EEG. The model was built using a new machine learning method
(RiskSLIM) that is designed to produce accurate, risk-calibrated scoring systems with a limited
number of variables and small integer weights. We validated the accuracy and risk calibration
of our model using cross-validation and compared its performance with models built with
state-of-the-art logistic regression methods. The database was developed by the Critical Care
EEG Research Consortium and used data collected over 3 years. The EEG variables were
interpreted using standardized terminology by certified reviewers.

EXPOSURES All patients had more than 6 hours of uninterrupted EEG recordings.

MAIN OUTCOMES AND MEASURES The main outcome was the average risk calibration error.

RESULTS There were 5427 continuous EEGs performed on 4772 participants (2868 men,
49.9%; median age, 61 years) performed at 3 institutions, without further demographic
stratification. Our final model, 2HELPS2B, had an area under the curve of 0.819 and average
calibration error of 2.7% (95% CI, 2.0%-3.6%). It included 6 variables with the following point
assignments: (1) brief (ictal) rhythmic discharges (B[I]RDs) (2 points); (2) presence of
lateralized periodic discharges, lateralized rhythmic delta activity, or bilateral independent
periodic discharges (1 point); (3) prior seizure (1 point); (4) sporadic epileptiform discharges
(1 point); (5) frequency greater than 2.0 Hz for any periodic or rhythmic pattern (1 point); and
(6) presence of “plus” features (superimposed, rhythmic, sharp, or fast activity) (1 point). The
probable seizure risk of each score was 5% for a score of 0, 12% for a score of 1, 27% for a
score of 2, 50% for a score of 3, 73% for a score of 4, 88% for a score of 5, and greater than
95% for a score of 6 or 7.

CONCLUSIONS AND RELEVANCE The 2HELPS2B model is a quick accurate tool to aid clinical
judgment of the risk of seizures in critically ill patients.

JAMA Neurol. 2017;74(12):1419-1424. doi:10.1001/jamaneurol.2017.2459
Published online October 9, 2017.

Editorial page 1395

CME Quiz at
jamanetwork.com/learning

Author Affiliations: Author
affiliations are listed at the end of this
article.

Corresponding Author: Aaron F.
Struck, MD, Department of
Neurology, University of Wisconsin,
7131 MFCB, 1685 Highland Ave,
Madison, WI 53705
(afstruck@wisc.edu).

Research

JAMA Neurology | Original Investigation

(Reprinted) 1419

© 2017 American Medical Association. All rights reserved.

http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2017.2459&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2017.2459
http://jama.jamanetwork.com/article.aspx?doi=10.1001/jamaneurol.2017.1922&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2017.2459
http://www.jamanetwork.com/learning/?utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamaneurol.2017.2459
mailto:afstruck@wisc.edu


C ontinuous electroencephalography (cEEG) provides
real-time monitoring of brain function in hospitalized
patients. The use of cEEG is expanding, motivated by

reports showing a high incidence of subclinical seizures in en-
cephalopathic patients with conditions ranging from sepsis to
traumatic brain injury.1-3

Features of EEG reported as factors associated with of sei-
zures include epileptiform and periodic discharges.4 How-
ever, to our knowledge, no study has examined how these fac-
tors affect seizure risk jointly, that is, it is unknown how seizure
risk changes when several patterns occur simultaneously.

We propose a simple scoring system for seizure risk that
we refer to as the 2HELPS2B score. Our tool provides a joint
assessment of seizure risk from cEEG observations and his-
tory of seizures, and it allows physicians to make accurate, risk-
calibrated probabilities by hand. We expect our tool to help phy-
sicians identify patients in need of continued cEEG monitoring
and who are likely to benefit from interventions.

Methods
Patients
Following institutional review board approval at Emory Uni-
versity, Brigham and Women’s Hospital, and Yale University,
institutions prospectively entered participant data into an ano-
nymized database.5 Waiver of consent was granted because of
minimal risk to patients. The database includes reports of clini-
cal information and findings on cEEG greater than or equal to
6 hours. The cEEG findings were coded using American Clini-
cal Neurophysiology Society standardized terminology.6

Clinical variables were collected as described in Lee et al.5 Pa-
tients admitted for elective epilepsy monitoring were ex-
cluded. Data from 5427 cEEG sessions on 4772 different pa-
tients were collected. All investigators entering patient data had
to undergo a module explaining the patterns and an exami-
nation demonstrating mastery of the material. This method has
been shown to have high interrater reliability.7 Seizures are not
defined in the American Clinical Neurophysiology Society ter-
minology, but most clinicans used the modified Young et al8

criteria to define seizures. Both electrographic and electro-
clinical seizures were included.

Data Set Creation
We considered 24 candidate variables for inclusion in risk mod-
els (Table 1). Posterior dominant rhythm; brief (ictal) rhythmic
discharges (B[I]RDs); reactivity; sporadic (nonperiodic and non-
rythmic) epileptiform discharges; history of seizure, generalized
rhythmic delta activity (GRDA), lateralized rhythmic delta activ-
ity (LRDA), generalized periodic discharges (GPDs), lateralized
periodic discharges (LPDs), and bilateral independent periodic
discharges (BIPDs); primary neurological diagnosis (altered men-
tal status, infection, inflammatory disease, cerebral neoplasm,
hypoxic/ischemic encephalopathy, intracerebral hemorrhage,
metabolic encephalopathy, stroke, subarachnoid hemorrhage,
subdural hemorrhage, traumatic brain injury, and hydrocepha-
lus); frequency of rhythmic or periodic patterns; presence of a
stimulus-induced pattern; and presence of a “plus factor” (ie,

superimposed rhythmic, fast, or sharp activity). Candidate vari-
ables were selected based on prevalence within the database and
previous associations with seizures.

Variables were combined into single factors to simplify the
prediction model and increase the effect size for each factor.
This was performed for variables that are associated with a
similar risk of seizures and rarely co-occur. To create a fre-
quency binary variable, frequency was divided into binary vari-
ables at each 0.5-Hz interval from 0.5 to 3 Hz. Each potential
dividing point was analyzed to find the cut point with maxi-
mal predictive value.

Descriptive statistics are reported with 95% CIs. Odds ra-
tios and Fisher exact test results are reported for candidate vari-
ables with α set to .05.

Risk Score Methods
Our goal was to create a risk score similar to CHADS2 (con-
gestive heart failure, hypertension, age greater than 75, dia-
betic, and history of stroke [doubled]),9 that is, a simple
additive model with a limited number of factors and small
integer weights for quick calculations. There is no standard
method to create such models. Existing tools were built
manually (eg, CHADS2 a point system for stroke risk with
atrial fibrillation)9 or by combining logistic regression
with ad hoc feature selection and rounding (eg, simplified
acute physiology score [SAPS II], a point system for mortal-
ity in the intensive care unit).10

Existing approaches may fail to produce risk-calibrated
models. Therefore, we built our risk score using a new method
known as Risk-Calibrated Supersparse Linear Integer Model
(RiskSLIM).11 This RiskSLIM method uses optimization tech-
niques to find the best logistic regression model with bounded
integer coefficients (integers between –10 and 10), and a lim-
ited number of risk factors (at most 6). In such settings, Risk-
SLIM can output an optimized risk score with superior
risk-calibration and/or area under the curve (AUC). Because
RiskSLIM is a new method, we compared RiskSLIM models
with baseline models built using state-of-the-art methods:
penalized logistic regression (PLR) with a combined L1/L2

penalty using the same constraints.

Key Points
Question Can the risk of seizures in critically ill patients be
accurately determined with a simple clinical tool?

Findings In this study, a point system using 6 variables (brief
[ictal] rhythmic discharges [2 points]; presence of lateralized
periodic discharges, lateralized rhythmic delta activity, or bilateral
independent periodic discharges [1 point]; prior seizure [1 point];
sporadic epileptiform discharges [1 point]; frequency greater than
2.0 Hz of periodic/rhythmic pattern [1 point]; and presence of
“plus” features [1 point]) was associated with seizure risk of 5%
with a score of 0, 12% with a score of 1, 27% with the score of 2,
50% with the score of 3, 73% with a score of 4, 88% with a score
of 5, and greater than 95% with a score of 6 or 7.

Meaning The 2HELPS2B score may provide accurate seizure risk
stratification from patient history and initial
electroencephalography.
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Risk Score Evaluation
We evaluated all models for accuracy and risk calibration (ie,
how well the predicted probability of a seizure matches the true
prevalence). To assess accuracy, we computed the area under
the receiver operating characteristic curve (ROC). To assess risk
calibration, we constructed reliability diagrams plotting the ob-
served prevalence of seizures vs the predicted probability (eg,
Figure, A).12 In addition, we examined the average calibra-
tion (CAL) error, the mean squared error between the pre-
dicted probability and the observed prevalence. When a model
has perfect risk calibration, the reliability curve should lie on
the 45° line, and CAL should be 0% (Figure, A). The average
CAL error is a measure of how close the probable risk of sei-
zures and the actual risk of seizures are. It is minimized to find
the best risk model.

Risk Score Validation
We validated the performance of all models using standard
5-fold cross-validation (5-CV). That is, we randomly split the
data into 5 parts, fit the model using 4 of 5 folds, and vali-
dated this model on last fold (that the model had not seen).
This procedure was repeated 5 times, each time using a dif-
ferent fold for validation, to obtain 5 independent estimates
of CAL and AUC. We report the mean of these estimates as 5-CV
CAL and 5-CV AUC.

Because fitting models with PLR requires us to specify
free parameters, we fit models for more than 1100 combina-
tions of free parameters and picked the combination that

maximized the 5-CV test AUC. This required us to validate
the performance using a nested 5-CV procedure. All results
for model performance are reported with respect to the left-
out data (the fold used for testing) only; testing data were
held out and were not used for either choosing the values of
free parameters nor for training the model. This rigorous
separation of training and testing data provides protection
against overfitting and minimizes bias in the reported model
performance.

Results
Patients
Among 5427 cEEG sessions, 719 (12.52%) had a seizure during
cEEG; 2315 (40.03%) had GRDA, LRDA, BIPDs, LPDs, or GPDs.
A total of 340 (5.92%) had sporadic epileptiform discharges.

Seizure Prediction Risk Score
After fitting several models using RiskSLIM and PLR for model
size constraints ranging between 4 and 27, we selected a
RiskSLIM model with 6 variables shown in Table 2.

In contrast to the baseline PLR model, the RiskSLIM
model was simpler, had superior risk calibration (mean 5-CV
CAL of 2.7% [95% CI, 2.0%-3.6%] vs 8.9% [95% CI, 7.9%-
9.8%] for PLR), and had comparable AUC (mean 5-CV AUC
of 0.819 [95% CI, 0.799-0.849] vs 0.821 [95% CI, 0.801-
0.855] for PLR). We also compared 2HELPS2B with a PLR

Table 1. Univariate Risk Factor Analysisa

Variable
Proportion With Sz
(95% CI)

No. (%) of Patients
With Finding OR (95% CI) P Valueb

PDR 0.10 (0.08-0.12) 1166 (21.5) 0.711 (0.50-0.92) <.001

BRDs 0.69 (0.62-0.76) 176 (3.2) 18.805 (18.47-19.14) <.001

Unreactive background 0.18 (0.15-0.22) 454 (8.4) 1.610 (1.36-1.86) <.001

Prior Sz 0.23 (0.20-0.25) 1168 (21.5) 2.663 (2.50-2.83) <.001

GRDA 0.13 (0.11-0.15) 927 (17.1) 1.071 (0.862-1.28) .51

LRDA 0.28 (0.23-0.32) 410 (7.6) 2.967 (2.73-3.20) <.001

GPDs 0.16 (0.13-19) 696 (12.8) 1.368 (1.15-1.59) <.01

LPDs 0.44 (0.41-0.48) 802 (14.8) 9.825 (9.65-10.0) <.001

BIPDs 0.28 (0.21-0.36) 122 (2.2) 2.784 (2.38-3.19) <.001

Infection 0.16 (0.11-0.24) 118 (2.2) 1.350 (0.853-1.85) .26

Inflammation 0.13 (0.06-0.24) 56 (1.0) 0.998 (0.202-1.80) .99

Neoplasm 0.19 (0.16-0.22) 577 (10.6) 1.694 (1.47-1.92) <.001

ICH 0.12 (0.10-0.15) 543 (10.0) 0.963 (0.693-1.23) .84

Metabolic encephalopathy 0.06 (0.04-0.10) 325 (6.0) 0.467 (0.0177-0.916) <.001

Stroke 0.10 (0.07-0.13) 452 (8.3) 0.737 (0.416-1.059) .06

SAH 0.07 (0.05-0.09) 508 (9.4) 0.499 (0.140-0.845) <.001

SDH 0.13 (0.10-0.17) 353 (6.5) 1.078 (0.760-1.40) .62

TBI 0.07 (0.04-0.12) 142 (2.6) 0.523 (0-1.170) .05

Hypoxic/ischemic 0.13 (0.10-0.16) 390 (7.2) 1.004 (0.694-1.311) .99

IVH 0.10 (0.06-015) 146 (2.7) 0.736 (0.180-1.29) .31

Hydrocephalus 0.07 (0.03-0.14) 86 (1.6) 0.520 (0-1.35) .14

Discharges 0.29 (0.26-0.33) 763 (14.1) 3.733 (3.55-3.91) <.001

Frequency (>2Hz)c 0.42 (0.32-53) 77 (1.4) 2.570 (1.62-4.09) <.001

Abbreviations: BIPD, bilateral
periodic discharges; BRDs, brief
rhythmic discharges;
GPDs, generalized periodic
discharges; GRDA, generalized
rhythmic delta activity;
ICH, intracranial hemorrhage;
IVH, intraventricular hemorrhage;
LPDs, lateralized periodic discharges;
LRDA, lateralized rhythmic delta
activity; OR, odds ratio;
PDR, posterior dominant rhythm;
Prop, proportion with seizures;
SAH, subarachnoid hemorrhage;
SDH, subdural hemorrhage;
Sz, seizure; TBI, traumatic brain
injury.
a A total of 2868 were men (49.9%),

median age; 61 years.
b P value calculated with Fisher exact

test.
c Variable only evaluated for

ictal-interical continuum patterns.
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model where we did not round the coefficients or constrain
the number of variables. In this case, we did obtain a model
with slightly better risk calibration (mean 5-CV CAL 2.0%
[95% CI, 1.5%-3.0%]) and improved AUC (mean 5-CV AUC of
0.837 [95% CI, 0.815-0.868]), but this model is no longer
simple enough to use for quick predictions as the points are
not integers and it used 21 of the 29 variables.

As a mnemonic, we call this RiskSLIM model the 2HELPS2B
score, which represents GRDA, LRDA, BIPDs, LPDs, or GPDs
with a frequency greater than 2 Hz (1 point); epileptiform dis-
charges (1 point); LPDs or LRDA or BIPDs (1 point); GRDA, LRDA,
BIPDs, LPDs, or GPDs with plus features (superimposed rhyth-
mic, fast, or sharp activity); any history of seizures; (acute or
remote) (1 point); and B(I)RDs (2 points).

The risks of seizures for each possible 2HELPS2B score are
5% for a score of 0, 12% for a score of 1, 27% for a score of 2,
50% for a score of 3, 73% for a score of 4, 88% for a score of 5,
and greater than 95% for a score of 6 or 7. Table 2 provides a
reference with the probabilities for each score from 1 to 6. The
area under the ROC for this model applied to all patients was
0.819 and for the 5 folds ranged between 0.776 and 0.849.

Figure, A is a risk-calibration plot of probable vs actual inci-
dence of seizures at each point level. Figure, B plots the ROC
with 95% CIs.

Discussion
The 2HELPS2B score is an accurate, simple, and clinically prac-
tical risk score for seizure occurrence in hospitalized patients
undergoing cEEG. The large sample size of data collected at
multiple institutions with a systematic application of stan-
dardized EEG nomenclature fostered development of a ro-
bust risk scoring system. The large sample size provides sta-
tistical power; the multiple institutions and uniform data
collection ensure broad applicability.

The 2HELPS2B system combines 5 readily observable EEG
features with a single factor from the patient history (any
known history of seizure, remote or acute) to assign a score
between 0 and 7. The score has good face validity, being based
on established clinical and EEG risk factors. Moreover, it shows
excellent CAL: the probabilities it assigns for each level of risk

Figure. Risk Calibration and Receiver Operating Characteristics for Scoring System
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A, Each dot represents a point value from 0 to 6 points. Point values are only
shown up to 6 because no patients in the database had 7 points. The x-axis is
the probable seizure risk based on the SLIM 6-variable RiskSLIM model. The
y-axis is the actual observed risk, estimated as the fraction of patients with a
given score who had seizures. The black line has a slope of 1 and intercept at the
origin. Proximity to this line indicates goodness of fit and is used as a marker to

look for bias. The number associated with each dot is the number of patients in
the Critical Care EEG Research Consortium database with the associated
number of points. B, Receiver operating characteristics curve for the RiskSLIM
model with 95% CIs developed from bootstrapping from the full training set is
represented by the dashed lines. The solid black line represents the null
classifier. Area under the curve = 0.819.

Table 2. Optimized Risk Score for Seizure Probabilitya

Variable

Total Score

0 1 2 3 4 5 >6
Probable risk of Sz, %b 5 12 27 50 73 88 >95

Actual prevalence of Sz, % (95% CI)c 3 (2-3) 12 (10-13) 34 (31-37) 52 (46-57) 71 (63-78) 84 (71-99) 92 (77-100)
a Scoring for each risk factor was 2 points for brief rhythmic discharge and

1 point each for lateralized periodic discharges/bilateral independent periodic
discharges/lateralized rhythmic delta activity; plus features; prior seizure;
frequency greater than 2 Hz; and discharges. Note, no patients had 7 points in
the cohort (all possible risk factors); hence, its noninclusion.

b Probability of seizure presented as the mean; probable risk is the probability of
seizure based on RiskSLIM.

c The numbers in parentheses are 95% CIs obtained using bootstrap
resampling.
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closely match those observed in our cohort. The association
of higher frequency (>1.5-Hz) discharges and increased risk of
seizures seen in the study by Rodriguez Ruiz et al13 was con-
firmed to have independent association value in the 2HELPS2B
investigation.

The rigorous cross-validation method that we used and the
large cohort size of 5427 ensures our results are widely appli-
cable. Supporting the generalizability of our study, the inci-
dence of seizures in our cohort is within the 8% to 34% range
of published reports.1,14-22 Subgroups also have an incidence
similar to prior studies, such as stroke at 10% (range, 6%-
26%) and subarachnoid hemorrhage at 7% (range, 4%-19%).1-3,17

Limitations
There are some limitations of the study. The duration of cEEG
was not included in the database; thus, this study does not ad-
dress the change in probability of seizures with increased ob-
servation duration. This issue has been partially addressed in
prior studies. Risk of a seizure within 72 hours was found to
be less than 5% if a seizure was not detected within 16 hours
of monitoring.2,4 Future studies should explore the associa-
tion between the time-dependent risk for seizures under con-
tinued observation in relation to the 2HELPS2B score. No cEEG
sessions of less than 6 hours were included in this study; hence,
these criteria should be applied with caution to studies of less

than 6 hours. However, a reasonable approach for use of the
2HELPS2B score would be to calculate the score at the initial
reading of the cEEG, typically within the first half hour of re-
cording (>68% of EEG abnormalities are evident by this time).2

If new EEG findings emerge, the 2HELPS2B score should be
modified at the second reporting, typically on the order of 6
to 8 hours. By this time, 95% of epileptiform abnormalities have
been detected.2 Initially, 2HELPS2B can serve as a tool to aug-
ment clinical judgment regarding duration of monitoring and
need for antiseizure medications. We anticipate future clini-
cal studies using 2HELPS2B as a risk-stratifying metric to de-
fine rigorous cut points guiding clinical management, similar
to the way the CHADS2 score guides anticoagulation in atrial
fibrillation.9

Conclusions
The 2HELPS2B score is an easy-to-use tool to augment clini-
cal judgment of the risk for seizures in individual patients. The
simplicity of the system allows for easy integration into clini-
cal workflow. With increasing familiarity, 2HELPS2B will im-
prove communication between EEG interpreters and clini-
cians through the use of a quickly comprehensible single
number to describe seizure risk for patients on cEEG.
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