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Stochastic programming models are large-scale optimization problems that are used to facilitate decision mak-
ing under uncertainty. Optimization algorithms for such problems need to evaluate the expected future costs
of current decisions, often referred to as the recourse function. In practice, this calculation is computationally
difficult as it requires the evaluation of a multidimensional integral whose integrand is an optimization prob-
lem. In turn, the recourse function has to be estimated using techniques such as scenario trees or Monte Carlo
methods, both of which require numerous functional evaluations to produce accurate results for large-scale
problems with multiple periods and high-dimensional uncertainty. In this work, we introduce an importance
sampling framework for stochastic programming that can produce accurate estimates of the recourse function
using a small number of samples. Our framework combines Markov chain Monte Carlo methods with kernel
density estimation algorithms to build a nonparametric importance sampling distribution, which can then be
used to produce a lower-variance estimate of the recourse function. We demonstrate the increased accuracy
and efficiency of our approach using variants of well-known multistage stochastic programming problems. Our
numerical results show that our framework produces more accurate estimates of the optimal value of stochastic
programming models, especially for problems with moderate variance, multimodal, or rare-event distributions.
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1. Introduction

Stochastic programming models are large-scale opti-
mization problems that are used to facilitate decision
making under uncertainty. Optimization algorithms
for such problems require the evaluation of the
expected future costs of current decisions, often
referred to as the recourse function. In practice, this
calculation is computationally difficult as it requires
the evaluation of a multidimensional integral whose
integrand is an optimization problem. Many algo-
rithms approximate the value of the recourse function
using quadrature rules (Pennanen and Koivu 2005)
or Monte Carlo (MC) methods (Shapiro et al. 2009,
Birge and Louveaux 2011). MC methods are particu-
larly appealing for this purpose because they are easy
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to implement and remain computationally tractable
when the recourse function depends on multiple ran-
dom variables. Nevertheless, the sampling error in
MC estimates can significantly impact the results of
a stochastic programming model. Although one can
reduce the sampling error in MC estimates by using
more samples in the MC procedure, this approach is
not computationally tractable in stochastic program-
ming because each sample requires the solution to a
separate optimization problem. As a result, MC meth-
ods need to be paired with a variance reduction tech-
nique to produce MC estimates with lower sampling
error for a moderate number of samples.

In this paper, we focus on a variance reduction tech-
nique known as importance sampling. Importance
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sampling aims to reduce the sampling error of MC
estimates by generating samples from an importance
sampling distribution. Ideally, this importance sam-
pling distribution is constructed in a manner that
favors samples from regions that contribute most to
the value of the recourse function. Although many
distributions can be used for this purpose, there exists
an importance sampling distribution that is optimal
in the sense that it can produce MC estimates with
zero variance (Asmussen and Glynn 2007). This so-
called zero-variance distribution is unknown and can-
not be directly used in practice. However, it can
be indirectly used to guide the design of effective
importance sampling distributions. Importance sam-
pling was first applied to stochastic programming
in a series of papers by Dantzig and Glynn (1990)
and Infanger (1992). The importance sampling distri-
bution from these papers showed promising results
as it was based on the zero-variance distribution.
The distribution was developed under the assump-
tion that the uncertainty is modeled using discrete
random variables. To the knowledge of the authors,
it has not been extended to the continuous case.
More importantly, the importance sampling distribu-
tion developed in their work would work well if the
cost surface is approximately additively separable in
the random dimensions. This is a difficult assump-
tion to verify in practice and in our experience the
approach in Dantzig and Glynn (1990) and Infanger
(1992) can often perform much worse than the naive
Monte Carlo method (see example in §4.6).

Our framework, which we refer to as the Markov
chain Monte Carlo (MCMC) importance sampling
(MCMC-IS) framework, exploits the fact that the zero-
variance distribution is known up to a normalizing
constant. This fact is well known and exploited by
many other importance sampling algorithms. The first
step is to use a Markov chain Monte Carlo algo-
rithm to generate samples from the zero-variance
distribution, and then a kernel density estimation
(KDE) algorithm to construct an approximate zero-
variance distribution from these samples. With this
approximate zero-variance distribution at hand, we
can then use importance sampling to generate a sec-
ond set of more relevant samples, and form a lower-
variance estimate of the recourse function. MCMC-IS
is flexible, in that it accommodates a wide array of
MCMC and KDE algorithms; nonparametric, in that
it does not require users to specify a family of dis-
tributions; robust, in that it consistently gives rea-
sonable results for probability distributions that are
difficult to work with using existing methods; and
well suited for stochastic programming, in that it pro-
duces lower-variance estimates of the recourse func-
tion that ultimately allow us to solve these models
more accurately.
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Importance sampling is just one of many variance
reduction techniques that can be used in stochastic
programming. The use of quasi-Monte Carlo (QMC)
methods were studied in Koivu (2005) and Drew and
Homem-de-Mello (2008). The non-independent and
identically distributed (ii.d.) case of MC sampling
has been studied in Homem-de-Mello (2008). Control
variates were proposed in Shapiro and Homem-de-
Mello (1998) and Higle (1998). A sequential sampling
algorithm was proposed in Bayraksan and Morton
(2011). A computational assessment of conditional
sampling, antithetic sampling, control variates, and
importance sampling appeared in Higle (1998). QMC
and Latin hypercube sampling (LHS) were compared
in Homem-de-Mello et al. (2011). The effect of sam-
pling on the solution quality of stochastic program-
ming problems was discussed in Linderoth et al.
(2006). In this paper, we use a series of numerical
experiments to demonstrate that our proposed frame-
work performs well when compared to crude Monte
Carlo (CMC) methods, QMC methods, and the impor-
tance sampling technique developed in Dantzig and
Glynn (1990) and Infanger (1992) (DGI). In addition,
we show that our framework significantly outper-
forms the existing sampling methods when the uncer-
tainty is modeled using a higher variance, rare-event,
or multimodal distribution.

MC methods need to be paired with optimization
algorithms to solve stochastic programming prob-
lems. In this paper, we illustrate the computational
performance of MCMC-IS using a popular decom-
position algorithm known as the stochastic dual
dynamic programming (SDDP) algorithm (Pereira
and Pinto 1991). We note, however, that MCMC-
IS can be paired with many other stochastic opti-
mization algorithms, such as the sample average
approximation method (Shapiro et al. 2009), stochas-
tic decomposition (Higle and Sen 1991), progressive
hedging (Rockafellar and Wets 1991), augmented
Lagrangian methods (Parpas and Rustem 2007), vari-
ants of Benders’ decomposition (Birge and Louveaux
2011), or even approximate dynamic programming
(Powell 2007). More generally, we also expect
MCMC-IS to yield similar benefits in sampling-based
approaches for developing stopping rules (Morton
1998, Bayraksan and Pierre-Louis 2012), chance-
constrained programming (Watson et al. 2010, Barrera
et al. 2014), and risk-averse stochastic programming
(Shapiro 2009, Kozmik and Morton 2014).

Although both MCMC and KDE algorithms have
received considerable attention in the literature, they
have not—to our knowledge—been used in this way
within the realm of stochastic optimization. There has
been some recent work on nonparametric importance
sampling methods in the field of statistics (Zhang
1996, Neddermeyer 2009). However, these techniques
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have not been adopted for practical applications
because of the computational overhead involved in
building a nonparametric importance distribution.
In this paper, we demonstrate that the computational
overhead of using an MCMC and KDE procedure is
negligible in the context of stochastic programming,
and that the MCMC-IS procedure is a highly efficient
way to obtain accurate results given a fixed number
of functional evaluations or run time.

Our paper is structured as follows: in §2, we pro-
vide a brief overview of stochastic programming and
illustrate the mechanism through which decomposi-
tion algorithms can produce inaccurate results for a
stochastic program when they are paired with a MC
method. In §3, we introduce the MCMC-IS frame-
work and present readers with a set of theoretical
insights and practical guidelines. In §4, we use a
series of numerical experiments based on a simple
newsvendor problem to illustrate the sampling-based
properties of MCMC-IS and demonstrate the bene-
fits of pairing MCMC-IS with a decomposition algo-
rithm to solve stochastic programming models. In §5,
we demonstrate that these benefits generalize across
a collection of benchmark stochastic programming
models. We summarize our contributions and discuss
directions for future research in §6.

2. Motivation
We consider a multistage linear stochastic program-
ming model defined as:

z*=min {cfx; +@(x,)}
X1
st. Ay =0y, ey
-xl 2 O/

where c; e R, A; e R™*™, and b; € R™. In general,
the function @ is called the recourse function, and is
used to represent the expected future costs of current
decisions

@Q(x) =E[Q,(x,, &0)], £=1,...,T=1. (2

Given a fixed decision in the previous stage and a
realization of the random parameters, the future costs
of the model can be estimated by solving the linear
program:

Qi (X1, &) :n’}gn C;r(gt)xt +@,(x;)

st A(E)x,=by (&) —Wi(é)%, 4,
t=2,...,T

®)

x>0,

where Q(Xr_;, ér) = 0 without loss of generality.
We will assume that ¢, e R™, A, e R"*", W, e R">"-1,

RIGHTS LIN KO

b, € R">!. The components of these parameters are
deterministic for + =1, but may be random for ¢ =
2, ..., T. We refer to the set of all random components
of the parameters at stage f using a D,-dimensional
random vector £, and denote its joint probability den-
sity function, cumulative distribution function, and
support as f,, F, and E,, respectively. We note that we
will frequently drop the time index ¢ from the defini-
tion of the recourse function when it is not relevant
to the discussion at hand (e.g.,, when we are refer-
ring to two-stage problems). In such cases, we assume
that @ =@, W = W,, £ =&,, and £ = %,. We refer the
interested reader to Birge and Louveaux (2011) for an
overview of multistage stochastic programming.

Many algorithms have been developed to solve
multistage stochastic programming problems. A key
step in these algorithms is the discretization of the
random parameters. In this context, discretization
means selecting a finite number of scenarios from a
continuous distribution. If the problem is modeled
with a discrete distribution, then discretization means
selecting a smaller number of samples from the finite
but often large number of realizations of the discrete
distribution. Of course Monte Carlo sampling, includ-
ing importance sampling, can be used to perform the
discretization.

We refer to the discretization approach described
previously as the “discretize-then-solve” approach
and the resulting discretization as a scenario tree. An
alternative to the discretize-then-solve approach is to
generate different samples of the random parameters
on the fly and use a MC method to estimate the
recourse function. Such an approach is advantageous
in that it can accommodate discrete or continuous
random variables, remain computationally tractable
for models with a large number of random variables,
and produce estimates of the recourse function whose
error does not depend on the number of random vari-
ables used in the model. Nevertheless, the error of
these estimates can significantly alter the results of
a stochastic programming model. In the following,
we explain how MC methods can be embedded in
decomposition algorithms, and demonstrate how the
sampling error of MC estimates can produce inaccu-
rate estimates of the optimal value and solution of a
multistage stochastic program.

2.1. The Perils of Sampling in

Decomposition Algorithms
Benders-type decomposition algorithms are designed
to solve multistage stochastic programming problems
by constructing a piecewise linear approximation of
the epigraph of the recourse function (Birge and
Louveaux 2011). The approximation is composed of
supporting hyperplanes to the recourse function at
fixed values of %,. The supporting hyperplanes are
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also known as cuts. Given a fixed value %,, a cut takes
the form of a linear inequality constraint

@ (%) = @ (%) + 0@ (%) (x, — %), 4)

where 4@, represents the subgradient of the recourse
function. We note that the parameters @, and 9@, are
the expected values of the optimal objective value and
dual variables of the linear program in (3). The pre-
ceding inequality assumes that these parameters can
be calculated exactly. This is usually only possible
when the random variables in our model have a
small, limited number of outcomes. In practice, the
expectations are therefore estimated using a MC pro-
cedure in which we first generate a set of N samples
of the random variables, &/, ..., ¢V, and then compute

. 1Y ;
@?AC(J@) = N Z Qi(x, &)
i=1
o ©)
‘f@ltv{c(ft) = N ZaQt(fu gtl)

Although MC methods can significantly reduce the
computational burden in generating cuts relative to
the discretize-then-solve approach, the cuts gener-
ated with MC methods are subject to sampling error.
Even if the sampling error associated with each cut
is negligible, the errors can compound across the iter-
ations of the decomposition algorithm. As a result,
decomposition algorithms that use a small number
of samples may produce an invalid approximation
of the recourse function, which then leads to inac-
curate results for the original problem. We illustrate
this well-known phenomenon in Figure 1, where we
plot the sampled cuts that are produced when a CMC
method is paired with a decomposition algorithm to
solve a simple two-stage newsvendor problem, whose
parameters are specified in §4.1.

Both cuts in this example were constructed using
N =50 samples. For clarity, we plot a subset of the
sample values Q(%,¢;), i=1,...,N along the ver-
tical line of X, as well as their sample average. In
Figure 1(a), we are able to generate a valid sampled
cut, which is valid because it underestimates the true
recourse function @(x) at all values of x. However,
it is possible to generate a sampled cut that in some
regions overestimates, and in other regions underes-
timates, the true recourse function @(x). We illustrate
this situation in Figure 1(b), where the sampled cut
excludes the true optimal solution at x* ~ 69 with
z*~ —20. Assuming that the algorithm only generates
valid cuts until the algorithm converges, the result-
ing estimates of x* and z* will be ¥ 38 and z~ —15,
corresponding to errors of 80% and 25%, respectively.

It is true that we can avoid generating invalid sam-
pled cuts if we model the uncertainty in the problem
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Figure 1 (Color online) In 1(a) the Sampled Cut Is Valid;
Assuming That Only Valid Cuts Are Generated in
Subsequent Iterations, a Decomposition Algorithm Will
Produce Accurate Estimates of x* and z*. In 1(b) the
Sampled Cut Is Invalid; Even If All The Other Cuts Produced
by the Algorithm Are Valid, the True Optimal Solution at x*
Will Remain Infeasible, and a Decomposition Algorithm
Will Produce High-Error Estimates for the Optimal Value
and Solution.

using a scenario tree. Although this approach allows
us to calculate the exact values of the parameters
in (4), it suffers from a different complication. Sce-
nario trees are discrete in nature, and therefore require
models where the uncertainty is modeled through
discrete random variables, or a suitable discretization
procedure that can represent continuous random vari-
ables using finite outcomes and probabilities. In the
latter case, the scenarios are fixed and the parame-
ters in (4) are easy to calculate. However, there are
no guarantees that the solution obtained with the dis-
cretized scenario tree will be optimal for the original
continuous problem unless a large number of scenar-
ios is used. It is an active area of research how to
best address this issue and a number of ways have
been proposed. One approach is to use a very large
scenario tree or a continuous distribution and then
use scenario reduction methods to find a representa-
tion with a finite and manageable scenario tree that is
close to the original in some sense (see, e.g., Dupacova



Downloaded from informs.org by [206.253.207.235] on 07 March 2018, at 10:19 . For personal use only, all rights reserved.

Parpas et al.: Importance Sampling in Stochastic Programming: MCMC Approach

362

INFORMS Journal on Computing 27(2), pp. 358-377, ©2015 INFORMS

et al. 2003). Even though scenario trees can yield accu-
rate answers for stochastic programming problems
with a small number of random variables and time
periods, they still present computational challenges
for large-scale problems with many random variables
and many time periods. In turn, we focus on the sam-
pled cut approach described previously.

3. The Markov Chain Monte Carlo
Approach to Importance Sampling

It is well known that we can reduce the sampling
error in the cut parameters if we increase the number
of samples that we use to construct their MC esti-
mates. Even so, the O(N~"°) convergence rate of MC
methods effectively implies that we have to solve four
times as many linear programs to halve the sampling
error of the cut parameters. Given the time that is
required to solve a typical linear program within a
large-scale stochastic programming model, such an
approach is simply not tractable. The sampling error
of the cut parameters depends on ¢?/N, where o
denotes the variance of the estimate. As a result, an
alternative way to reduce the sampling error in the
cut parameters without increasing the number of sam-
ples is to reduce the underlying variance of the quan-
tity that we are trying to estimate.

Importance sampling is a variance reduction tech-
nique that can produce an estimate of @, which has
lower variance and lower sampling error, than GMC
in (5). The variance reduction is achieved by using
a different probability distribution that can generate
samples in regions that contribute the most to @.
Although importance sampling estimates may have
substantially lower variance than their MC counter-
parts, choosing a suitable importance sampling dis-
tribution is a challenging process that is difficult to
generalize and has motivated many papers in the
statistics and simulation literature. We refer the inter-
ested reader to Asmussen and Glynn (2007) for a
review of importance sampling.

3.1. Importance Sampling and the
Curse of Circularity

Importance sampling is a variance reduction tech-
nique that constructs lower-variance estimates using
an importance sampling distribution g, as opposed to
the original sampling distribution f. When samples
are generated from the importance sampling distribu-
tion g, the recourse function can be calculated as

a(x) =E/[Q(x, )] =E,[Q(%, H)AE)], (6)

where E; and E, denote expectation with the distri-
butions f and g, respectively. The function A: E — R
is called the likelihood function and it is given by

@- @)
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The likelihood function is used to correct the bias
introduced by the fact that we generated the samples
from g instead of f. In theory, the only requirement
for the importance sampling distribution g is that the
likelihood function A has to be well defined over the
support of f. In other words, g(§) > 0 at all values
of ¢ where f (&) > 0.

Once we select a suitable important sampling dis-
tribution g, we can use it to generate a set of N i.i.d.
samples ¢, ..., &y and construct an importance sam-
pling estimate of the recourse function as

@5(%) = ZQ(X§)A )- ()

The benefit of generating samples from g depends
on the amount of variance reduction that can be
achieved. Importance sampling is most effective in
the context of stochastic programming when g can
generate samples from the regions that contribute the
most to the value of the recourse function at a fixed
point X. It is easy to show that the variance of an
importance sampling estimate is minimized when we
sample from

1Q(%, &)
E/1Q(, &)l

The importance sampling distribution g* is optimal
in the sense that no other distribution can produce
an importance sampling estimate with lower vari-
ance (Asmussen and Glynn 2007). In fact, if Q(x, £) is
always positive, then ¢* produces estimates with zero
variance and is therefore usually referred to as the
zero-variance distribution. The problem with using
(9) in practice is that it requires us to know the value
of E¢|Q(x, §)|, which is the quantity that we sought
to compute in the first place. We are thus faced with
a “curse of circularity” in that we can use (9) to
construct zero-variance estimates if and only if we
already have a zero-variance estimate of [ |Q(%, &)

The importance sampling framework that we intro-
duce in this paper revolves around two key obser-
vations. The first observation is that we can generate
samples from (9) using a MCMC algorithm since we
know the distribution up to a normalizing constant
E;1Q(x, §). This observation is well known and many
MCMC methods have been developed to take advan-
tage of this. We note that we cannot use these samples
to form a zero-variance importance sampling estimate
because we need to evaluate the likelihood of each
sample as shown in (7). In this case, the likelihood of
a given sample is given by

E1Q(x, &)
1Q(x, 9|~

8" (§) = f(€). ©)

A*(é) = (10)
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and it is also impossible to compute in practice as
it depends on E;[Q(x, £)|. This leads us to the sec-
ond observation: although we cannot use the samples
from (9) to directly form an importance sampling esti-
mate, we can use them to reconstruct an approxima-
tion of the zero-variance distribution using a KDE
algorithm. Using this approximate distribution, we
then can generate a second set of samples, evalu-
ate the likelihood of each sample, and form a lower-
variance importance sampling estimate.

3.2. Description of the MCMC-IS Framework

Our proposed framework consists of three steps:
(1) generate samples from the zero-variance distri-
bution using a MCMC algorithm, (2) construct an
approximate zero-variance distribution using a KDE
algorithm, and (3) sample from the approximate zero-
variance distribution to form a lower-variance impor-
tance sampling estimate.

MCMC algorithms are an established set of MC
methods that can generate samples from a density
known up to a normalizing constant. In contrast to
other MC methods, MCMC algorithms produce a
sequence of serially correlated samples. This sequence
forms a Markov chain whose stationary distribution is
the target density, given by (9) in our case. Although
many different MCMC algorithms can be used within
the MCMC-IS framework, we restrict our focus to
the Metropolis-Hastings algorithm because it is easy
to implement, does not require the specification of
many parameters, and does not depend on a restric-
tive set of assumptions. We refer the interested reader
to Gelman et al. (2010) for more on the Metropolis-
Hastings algorithm, and other MCMC algorithms that
can be used in MCMC-IS.

The Metropolis-Hastings algorithm uses a simple
accept-reject procedure to generate a Markov chain
that has (9) as its stationary distribution. In the kth
step, the algorithm generates a proposed state ¢
using a proposal distribution whose density q(- | &)
typically depends on the current state &. Together,
the proposed state, the current state, and the target
density are used to evaluate an acceptance probability
a(&;, {i). The proposed state is accepted with proba-
bility a(¢;, {;), in which case the Markov chain tran-
sitions to the proposed state &, := {;. Otherwise, the
proposed state is rejected with probability 1—a(&, ),
in which case the Markov chain remains at its current
state &, :=&;.

In this paper, we use a special instance of the
Metropolis-Hastings algorithm in which new states
are proposed using a random walk process. This
implies that the proposed state {; at each step k of
the Metropolis-Hastings algorithm is sampled from

q(- | &) as
Ge=&+ g, (11)
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where v, is a D-dimensional Gaussian random vari-
able with mean 0 and covariance matrix 2. In practice,
the Metropolis-Hastings algorithm requires that % is
specified beforehand. However, we can avoid speci-
fying this parameter if we use the adaptive Metropo-
lis algorithm described in Haario et al. (2001). When
states are proposed through a random walk process,
the proposal distribution is symmetric and the accep-
tance probability can be expressed as follows:

1Q(, &)1 f (&) }
1QE, €01 f(¢0) )

Once a set of M samples has been generated from
the zero-variance distribution specified in (9) using a
MCMC algorithm, we can construct an approximate
zero-variance distribution from these samples using
a KDE algorithm. KDE algorithms are established
techniques used to reconstruct continuous probabil-
ity distributions from a finite set of samples. We refer
the interested reader to Devroye and Gyorfi (1985),
Silverman (1986) and Scott (1992) for a detailed
overview of these techniques. It is worth noting that
a KDE algorithm can construct the approximate zero-
variance distribution, even as the MCMC algorithm
produces correlated samples (Hall et al. 1995).

The probability density function generated by the
KDE methodology is given by

a6, C) = min{l, 12)

1 M
QM(§)= MZKH(é:/ §1)/ (13)

where the function K, is referred to as a kernel func-
tion, and H € RP*P is its associated bandwidth matrix.
To ensure that § is a proper probability density func-
tion, we impose the following conditions on the ker-

nel function:
KH( s ) = 0/

/ Ky(€, )dé =1.

In addition, we assume that the kernel matrix is posi-
tive semidefinite, meaning that the matrix with (i, j)th
entry given by Ky(¢;,¢;), 1 <i,j <M is positive
semidefinite. These assumptions are required by most
KDE algorithms, and are satisfied by the majority of
kernels used in practice. A popular kernel, and the
one that we use in this paper, is the Gaussian product
kernel:

21 (& — &0’
K. 6) =1 (s ). a9
The associated bandwidth matrix H for the Gaussian
product kernel is a D x D diagonal matrix that con-
tains the bandwidth parameters of each dimension
hy, ..., hp along its diagonal. In our implementation,
we use a one-dimensional likelihood-based search to
estimate the value of the bandwidth parameter h; sep-
arately for each dimension k.

(14)
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Using the approximate zero-variance distribu-
tion ¢,, we can finally construct an importance
sampling estimate of the recourse function by
generating N additional samples from §,,. Although
these samples will not originate from the true zero-
variance distribution g*, they can still be used to pro-
duce a lower-variance importance sampling estimate
provided that the KDE algorithm has constructed a
gy that is similar to g*. Generating samples from g,
is also beneficial in that the samples are independent
and the kernel functions are easy to sample from.
In practice, we construct ¢,, using modest values of
M and then construct @'S(%) using large values of N.

The computational burden of the MCMC step is
a result of the accept-reject algorithm, which typi-
cally requires more LP evaluations (proposed sam-
ples) than are used (accepted samples). The additional
advantage of estimating and sampling the approxi-
mate importance sampling distribution is the relative
efficiency of generating a larger number of samples.

We provide a full formal description of the MCMC-
IS framework in Algorithm 1, with additional imple-
mentation details in §3.4.

Algorithm 1 (Markov Chain Monte Carlo Importance
Sampling (MCMC-IS))

Require: X: previous stage decision

Require: M: number of samples generated using the
MCMC algorithm

Require: N: number of samples generated with the
approx. zero-variance distribution

Require: &;: starting state of the MCMC algorithm

Step 1: Generate Samples from the Zero-
Variance Distribution using MCMC

1.1 Set k=0
1.2 Given the current state ¢, generate {; ~ (- | &)-
1.3 Generate a uniform random variable
u~Ue(0,1).
1.4 Transition to the next state according to:
_P;M5agm,
€k =

&, otherwise,

where

a@mzmﬂlwwaW@me}

T1QE, €01f (6a (&€

1.5 Let k <~k + 1. If k =M then proceed to Step 2.
Otherwise return to Step 1.1.

Step 2: Construct the Zero-Variance
Distribution using KDE

2.1 Reconstruct the approximate zero-variance
distribution:

1 M
Em(®) = 372 Ku(€, £)-
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Step 3: Sample from the Approximate Zero-
Variance Distribution to form an Importance
Sampling Estimate

3.1 For Generate N new samples from ¢, and
form the importance sampling estimate

f(&)
Su(&)

@50 =13 06, &)
N i=1 l

3.3. Ingredients of the Convergence Analysis
for MCMC-IS

MCMC-IS has two sources of error: the first source of
error is due to the MCMC algorithm used to gener-
ate samples from the zero-variance distribution, and
the second is due to the KDE algorithm used in the
construction of the approximate zero-variance distri-
bution. If the sampling algorithm is embedded within
an optimization algorithm, then there is also a third
source of error, but in this section we focus on the
sampling aspect. The main convergence condition for
a MCMC algorithm requires the underlying Markov
chain to be irreducible and aperiodic. The irreducibil-
ity property means that the chain can eventually reach
any subset of the space from any state. The aperi-
odic condition means that the chain cannot return to
a subset of the space in a predictable manner. Formal
definitions of these properties can be found in Roberts
and Rosenthal (2004). The first step in the convergence
analysis is to show that these two conditions are sat-
isfied. In the case of the SDDP algorithm, the MCMC
algorithm will be used whenever a new sampled cut
needs to be generated and therefore these two con-
ditions will hold even if the problem does not have
complete recourse.

To control the error due to the KDE algorithm, we
need to ensure that the number of samples generated
by the MCMC algorithm M is large enough, and that
the bandwidth parameter &, is small enough (where
hi denotes the kth diagonal entry in the H matrix).
In particular, if (MhP)™' — 00, h — 0 as M — oo, and
the density function is approximated as

1 M
§M(§) = M ZKH(§/ fi),

then it has been shown that ¢, will probabilistically
converge to g* under the total variation norm (see
Devroye and Gydrfi 1985). Applying this result to
the MCMC-IS framework is not straightforward. The
complexity stems from the fact that the previous con-
vergence proofs for the KDE algorithm assume that
samples are generated from g*, whereas in our frame-
work these samples are generated from a Markov
chain whose stationary distribution is g*.
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3.4. Practical Guidelines for MCMC-IS

The first important choice for MCMC-IS is the choice
of a proper MCMC algorithm and a suitable pro-
posal distribution. In our experiments, we have used
our own implementation of the Metropolis-Hastings
MCMC algorithm and the adaptive Metropolis
MCMC algorithm described in Haario et al. (2001).
Both algorithms propose new samples using a ran-
dom walk process that starts off at a user-defined
point §,, which we set as § = E¢[£]. In turn, the
main benefit of the adaptive Metropolis algorithm is
that it does not require users to specify the step size
for the random walk process. More specifically, the
adaptive Metropolis algorithm uses a random walk
process in which the steps are normally distributed
with zero mean and the identity matrix as the covari-
ance matrix—while keeping track of accepted sam-
ples. After a fixed number of iterations (in our case,
30 per dimension of the random vector &), the adap-
tive Metropolis algorithm begins to use a sample
covariance matrix that is estimated from previously
accepted samples.

Another important choice in implementing MCMC-
IS is the number of samples to generate using a
MCMC algorithm (M). This is an important choice
because generating samples with a MCMC algorithm
is computationally expensive due to the fact that it
often takes more than M functional evaluations to
obtain M samples (as some samples are rejected in the
MCMC process). In our experience, we have found
that a small number of samples produces a significant
amount of variance reduction. Accordingly, we have
used M = 3,000 within all of our numerical experi-
ments in §§4 and 5. It may be surprising that a small
and constant number is sufficient even for large-scale
problems. In §4.3 we provide a possible explanation
for this result based on our numerical experiments.
In particular, it seems that a small number of sam-
ples is sufficient to bias the sampling toward the right
direction, and that the computational advantage of
sampling from the “exact” density is relatively small
compared to the computational cost of computing it.

The final choice before implementing MCMC-IS
is the KDE algorithm used in the construction of
the approximate zero-variance distribution. In our
experiments, we have used the MATLAB KDE Tool-
box, which is available online at http://www.ics.uci
.edu/~ihler/code/kde.html. The MATLAB KDE Tool-
box is a fast and flexible KDE implementation that
allows users to reconstruct kernel density estimates
using different types of kernels (e.g., Gaussian, Lapla-
cian, and Epatchenikov kernels) as well as differ-
ent types of bandwidth estimation procedures (e.g.,
leave-one-out cross-validation, optimizing MISE and
AMISE criteria). In our case, we have reconstructed
the approximated density using a simple Gaussian
product kernel and leave-one-out cross-validation
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bandwidth estimator. Our experience to date has
shown that MCMC-IS is robust with regards to the
choice of kernel function using a decent number
of samples to reconstruct the approximation zero-
variance distribution. Insights into the choice of the
bandwidth estimator are provided in §4.3.

4. Numerical Experiments with the

Newsvendor Problem

In this section, we demonstrate several properties of
MCMC-IS using a series of numerical experiments
based on a simple two-stage newsvendor problem.
In §§4.3-4.5, we illustrate different sampling-related
properties of MCMC-IS to provide insights into how
MCMC-IS works and how it should be used in
practice. In §4.6, we compare the performance of
MCMC-IS estimates to estimates that are produced
using a crude Monte Carlo method (CMC), a quasi
Monte Carlo (QMC) method, and the Dantzig-Glynn-
Infanger (DGI) importance sampling technique pro-
posed in Dantzig and Glynn (1990) and Infanger
(1992). The remaining numerical experiments in §4.8
focus on the performance of MCMC-IS when it is
embedded in a decomposition algorithm and used to
solve stochastic programming models with different
types of uncertainty. Further experimental results on
MCMCH-IS can be found in Ustun (2012).

4.1. Description of the Newsvendor Problem

We consider a two-stage newsvendor problem with
uncertain demand and sales prices, where the first-
stage decision-making problem is a linear program

defined as

Z*=min {x+@(x)}
! (16)
st. x>0,

and the recourse function is a linear program de-
fined as

Q¢ = ile{—P(@% — 1Y}

.y

Yy, <d(§), (17)
Vit <%,

YVi,%2.=0,

where X denotes the quantity of newspapers pur-
chased in the first stage, ¢ = (&, &,) represents the
uncertainty in demand d(£) and sales price p(&) of
newspapers in the second stage, and scalar r rep-
resents the price of recycling unsold newspapers.
We usually model the uncertainty in demand as
d(&) =100 x exp(¢;) and the uncertainty in sales price
as p(€) = 1.5 x exp(§,), where ¢; and ¢, are indepen-
dent normal random variables with mean u and stan-
dard deviation . This implies that the uncertainty in
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d(¢) and q(€) are modeled using a lognormal distribu-
tion. We set u =0 and change the underlying variance
of the model by altering the value of o from o =1 to
o=2

4.2. Details on Experimental Setup and
Reported Results

Our choice of a simple model for this section is
because the distributions can be easily visualized, and
we can determine the value of the true recourse func-
tion at various points using numerical integration
procedures. In contrast to other test problems in the
stochastic programming literature, this setup allows
us to calculate the true values of the optimal solu-
tion x* and the optimal value z* of the underlying
model. In turn, we are able to report the following set
of statistics:

* Mean-squared error of the estimate of optimal
solution %, defined as MSE(¥) = |x* — X||3.

* Mean-squared error of the estimate of the opti-
mal value Z, defined as MSE(2) =E ||z* — |3

* Mean-squared error of the approximate zero-
variance distribution, defined as MSE($) = [(g(¢) —
§(6)dé.

* Mean-squared error of the estimated recourse
function é{ at a fixed point %, defined as MSE(G(%)) =
Efl@(x) — &@)I13-

* Sample variance of the estimated recourse func-
tion @ at a fixed point £, defined as S(4(£))? = E[@(x) —
E[G(H)]P.

In our experiments we estimated the quantities
above using a sample average approximation. Such
statistics are crucial in measuring the effectiveness
of importance sampling procedures as importance
sampling estimates will typically have low sample
variance, but may be prone to high bias and high
mean-squared error. In our experiments, we compute
sample average values for these statistics using a total
of 30 simulations. We note that we have normalized
all of these values for the sake of clarity.

Our numerical experiments were specifically de-
signed to provide a fair computational comparison
between different sampling methods by ensuring that
each sampling method was allotted the same number
of functional evaluations. The careful reader should
notice that a MCMC-IS uses a total of M + M, func-
tional evaluations to construct an importance sam-
pling distribution, where M, denotes the number of
samples that are rejected because of the accept-reject
procedure of the MCMC algorithm. Thus, if we ran an
instance of MCMC-IS using M samples to construct
the importance sampling distribution and N samples
to compute our estimate, then we formed a compara-
ble estimate for CMC, QMC, and DGI using a total of
M+ M, + N samples. We note that this point may be
neglected as we have consistently used N to denote
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the number of samples in figures and tables for the
sake of clarity. In this case, N only refers to the num-
ber of samples used to construct MCMC-IS estimates,
and we stress that all other methods were given the
same number of functional evaluations as MCMC-IS.

All of the results from our numerical experiments
were produced using MATLAB version 2012a. In par-
ticular, we used a Mersenne-Twister algorithm to
generate random numbers that were used for CMC
sampling as well as importance sampling procedures.
For QMC sampling, we used a Sobol sequence that
was randomized using the Matousek-Affine-Owen
scrambling algorithm. We note that we have imple-
mented our own version of the DGI importance sam-
pling method, as it is described in Infanger (1992).
As stated in §3.4, we used our own implementa-
tions of the Metropolis-Hastings MCMC algorithm
and the adaptive Metropolis algorithm as the MCMC
algorithm in MCMC-IS. In both cases, we produced
an approximate zero-variance distribution using the
Gaussian product kernel function and a leave-one-out
cross-validation bandwidth estimator from the MAT-
LAB KDE Toolbox.

Lastly, all of our stochastic programming problems
were solved using a MATLAB implementation of the
SDDP algorithm, which used a MEX file to call the
IBM ILOG CPLEX 12.4 Callable Library and solve a
series of linear programs with sampled parameters
in C. We have this set of MEX files to make it eas-
ier for practitioners to implement MCMC-IS using
MATLAB and CPLEX 12.4 available at http://www
.doc.ic.ac.uk/~pp500/. The collection includes a MEX
file that can generate a sampled cut, a MEX file that
can generate samples from the zero-variance distri-
bution using a Metropolis-Hastings algorithm, and a
MEX file that can generate samples from the zero-
variance distribution using an adaptive Metropolis
algorithm. These files can be paired with the MAT-
LAB KDE toolbox and embedded in a decomposition
algorithm to solve stochastic programming models
using MCMC-IS.

4.3. The Effect of the Number of MCMC Samples
and the KDE Bandwidth Parameter

Our numerical experiments with the newsvendor

problem suggest that a modest number of MCMC sam-

ples (M) can produce an approximate zero-variance

distribution (g, that yields substantial variance

reduction in our estimates of the recourse function.

As shown in Figure 2(a), increasing M does reduce
the error in our §,,;. However, the computational cost
of such an increase is not justified in terms of the
marginal improvement in the accuracy of our recourse
function estimates. This is a positive result as the
MCMC algorithm represents a computationally expen-
sive part of our framework. A possible explanation
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(Color online) (a) The Majority of the Gains in Variance Reduction and Accuracy Can Be Achieved for Small Values of //. Note that the

Axis for MSE(g,,) Is on the Right, and the Scale for MSE(Q) Is on the Left. (b) Contours of g*. (¢)—(e) Contours of §,, for Different Values
of M; the Bandwidth Parameter for These Distributions Is Estimated Using a One-Dimensional Likelihood-Based Search. (f) g o0, With a
Bandwidth That Is 20% Smaller for Each Dimension. The Resulting Mean Square Error Is Lower But the Variance Is Higher for the

Density in (f)

for this empirical observation is that if our §,, qualita-
tively agrees with g*, then the sample statistics of the
approximate distribution will qualitatively agree with
the sample statistics of the zero-variance density.

To illustrate this point, we plot the contours of
the true zero-variance distribution ¢* in Figure 2(b)
and the contours of §,, for different values of M
in Figures 2(c)-2(e). These figures suggest that the

RIGHTS LI N Ky

approximate distributions produced by MCMC-IS
qualitatively agree with the true zero-variance distri-
bution even at low values of M. In Figure 2(f), we
show the contours of our approximate zero-variance
distribution after we reduce the bandwidth parame-
ters of the kernel function by 20%. This decreases the
MSE of §,, by approximately 12% but increases its vari-
ance by approximately 15%, thereby demonstrating
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the bias-variance trade-off of KDE algorithms. These
results were constructed with the first-stage decision
fixed at X =50.

4.4. Adaptive Sampling of the Important Regions
The major difference between our framework and
a standard MC method is that we generate sam-
ples using an importance sampling distribution g, as
opposed to the original distribution f. As a result,
the samples that are generated using g, are typi-
cally located in regions that contribute the most to
the value of the recourse function (i.e., in regions
where |Q(%, &)|f (€) is large) whereas the samples that
are generated using f are typically located in regions
where the original distribution attains high values.
We demonstrate this difference in Figure 3 where we
plot a set of samples generated from f using the CMC
method (left), and another set of samples generated

@@ 1

S 0, O f(é)
o CMC

&

&

-5 0 5

from §,, using MCMC-IS. The first set of contours in
Figure 3 pertains to the original distribution f and
the second set of contours pertains to the true zero-
variance distribution g*. Note that f and g¢* are not
only centered around different points but also have
different shapes. These results were constructed with
the first stage decision fixed at X = 50.

4.5. Dependence of the Sampling Distribution on
the Previous Stage Decision
In many cases, the importance sampling distribu-
tions used within a stochastic programming applica-
tion should depend on the previous stage decision.
We illustrate such a dependence in Figure 4, where
we plot the absolute difference between an approx-
imate zero-variance distribution constructed around
the point %, =50 and two other approximate zero-
variance distributions constructed around the point

S 0, £) f(§)
N6)
o  MCMC-IS

&

-5 0 5

Figure 3 (Color online) Comparison of Points Generated with the Standard CMC Approach, and MCMC-IS

Note. Left: Using MC sampling; Right: Using importance sampling.

-10x,, &) - 0(xy, )| f(&

-2

Figure 4 (Color online) The Absolute Difference Between an Approximate Zero-Variance Distribution Constructed at X, = 50 and Two Other
Approximate Zero-Variance Distributions Constructed at X, = 10 (Left) and x, = 100 (Right)
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%; = 10 (left) and %, = 100 (right). As shown, the
approximate zero-variance distribution produced by
MCMC-IS can vary substantially as we change the
previous stage decision.

4.6. Comparison with Other Sampling Algorithms
In this section, we compare MCMC-IS estimates to
those produced by the CMC, QMC, and DGI meth-
ods. In Figure 5(b), we plot the sample standard
deviation of the different methods. Although both
importance sampling methods perform well in this
respect, it is worth noting that MCMC-IS performs
better for smaller sample sizes. When we plot the
error in Figure 5(a), we find that MCMC-IS and the
QMC sampling method perform best.

Our results suggest that the relative advantage
of MCMC-IS over other variance reduction meth-
ods becomes more significant as there is more uncer-
tainty in our model. Increasing the variance of the
underlying model typically means that more samples
are required for the algorithms to produce estimates
with a comparable variance and error. This is to be
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expected since the error of a MC estimate depends
on the variance of the random parameters as well as
the sample size. To emphasize this point, we repeat
the same calculations as above but increase the stan-
dard deviation of (§;,¢&,) from o =1 to ¢ =2 as
described in §4.1. In this regime, MCMC-IS outper-
forms all other methods (Figures 5(c) and 5(d)).

We note that the error in the DGI estimates of the
recourse function converges very slowly in this exam-
ple because the DGI method uses an approximate
zero-variance distribution, which is specifically built
for a recourse function that is additively separable
in the random variables. For this problem, however,
the recourse function is not additively separable. This
leads to estimates of the recourse function that have
high variance and high MSE.

4.7. Multimodal Distributions and

Rare-Event Simulation
Many decision-making models involve probability
distributions that are multimodal (Bucklew 2004) or
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Figure 5 (Color online) (a) and (b): Comparison of the Accuracy and Variance of Estimates Produced by Different Methods for a
Moderate-Variance Problem with o = 1. (c) and (d): Comparison of the Accuracy and Variance of Estimates Produced by Different

Methods for a Higher-Variance Problem with ¢ =2

Notes. Note that we omit the results for the DGl method when o = 2 for clarity. The normalized values of S, and MSE([?) for DGI are around 20% and 40%,

respectively.
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that involve rare events (Ravindran 2008). Unfor-
tunately, such complex probability distributions are
difficult to include in stochastic programming mod-
els, because existing variance reduction methods will
need an extremely large number of samples to gener-
ate accurate and reliable results.

Even as importance sampling is frequently used
when dealing with such models, existing importance
sampling techniques are ill suited for this purpose for
two reasons. First, as was illustrated in §3, an ideal
importance sampling distribution depends on the
incumbent solution and has to be created each time
we wish to generate a new sampled cut. This implies
that efficiency is an important consideration. Second,
stochastic programming models not only require us
to generate samples from these complex distributions,
but to use them to compute an accurate estimate of
the recourse function. In other words, an appropri-
ate importance sampling technique must also be able
to accurately evaluate the likelihood of each sample
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that it generates as in (7) or risk generating biased
results. Such issues often preclude the application of
stochastic programming when the distribution of the
uncertain variables has a complex structure.

To demonstrate these issues and show that our
proposed algorithm can sample efficiently in such
cases, we use an example where the important
regions of the recourse function are described by
a surface with two distinct modes, whose con-
tours are shown in Figure 6(a). In this example,
we have replaced the original integrand in the
recourse function Q(%, &;, &) f(&;, &) with a new inte-
grand Q(&, w(¢,), w(&))f (€, &), in which w(é) =
exp(£2/2 — (€ +3)2/8) + exp(£2/2 — (¢ + 1)2/8), £ =50,
and f denotes the standard bivariate normal density.
This example illustrates rare-event sampling, in the
sense that the majority of the samples from the impor-
tant regions are outside of the 20 interval of the origi-
nal distribution f.
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Figure 6 (Color online) (a): Contours of a Multimodal Model. Samples Generated Using CMC Are Shown on the Left and the Samples from
MCMC-IS Are Shown on the Right. (b) and (c): Error and Variance of Estimates Produced by Different Methods
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As in §4.5, we then generate a set of samples using
the CMC method and MCMC-IS. In this example, the
samples that are generated using the CMC method
are centered around the origin, where the original
distribution f attains its highest values (Figure 6(a),
left panel). In contrast, the samples that are gener-
ated using MCMC-IS are centered around the two
modes and in proportion to the depth of each mode.
These areas constitute the regions that contribute the
most to the value of the recourse function and cor-
respond to the areas where the approximate zero-
variance distribution §,, takes on its largest values. As
a result, the MCMC-IS framework obtains an estimate
of the recourse function that is both more accurate
(Figure 6(b)) and has less variance (Figure 6(c)) than
the other methods. In this example, we have omitted
the results for the DGI method because the impor-
tance sampling weights turn out to be zero for all
the samples, meaning that the estimates it produces
do not converge. This is a well-known problem with
the DGI method that has previously been discussed
(Higle 1998, §1.4).

4.8. Accuracy and Variance of MCMC-IS

Estimates from a Decomposition Algorithm
In this section, we compare the estimates of the opti-
mal value Z of the newsvendor problem when it is
solved with a decomposition algorithm that has been
paired with MCMC-IS, CMC, and QMC.

We consider an extension of the newsvendor prob-
lem from §4.1, where the newsvendor buys and sells
s different types of newspapers. We purposely do not
include any constraints to couple the different types
of newspapers so that we can extrapolate the true
values of x* and z* for the extended problem using
the true values from §4.1. In this case, we can assess
the accuracy of our estimates for a D =2 x s dimen-
sional problem by noting that the optimal solution x*
has to be the same for each of the s different types
of newspapers, and the optimal value z* has to scale
additively with the number of different newspapers s.

In contrast to the experiments in §§4.3—4.7, the accu-
racy of Z depends on the number of sampled cuts that
are added to the first-stage problem through a decom-
position algorithm, as well as the sampling method
that is used to generate these estimates. Note that in
our implementation of SDDP, we consider the num-
ber of iterations as equivalent to the number of cuts
added to the first-stage problem. In practice, the num-
ber of iterations needed for the algorithm to converge
is determined by a stopping test that is designed
to assess whether the decomposition algorithm has
converged. In this experiment, however, we compare
estimates that are produced after a fixed number of
iterations. Fixing the number of iterations ensures
that each sampling method produces estimates using
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the same number of samples, and isolates the per-
formance of the sampling method from the perfor-
mance of the stopping test. During our numerical
experiments we fixed the number of iterations to 8 x
s. We found that this simple rule was sufficient to
show the numerical properties of the different sam-
pling algorithms.

Figure 7 shows the convergence of the estimates
that we obtain when we solve a two-stage newsven-
dor problem with D =2 x 3 = 6 random variables
after 8 x 3 =24 cuts have been added to the first-
stage problem. In Figures 7(a)-7(d), we show the
results when we model the uncertainty in the demand
and sales price of each newspaper using the log-
normal distributions from §4.1, and we build the
approximate zero-variance distribution for each sam-
pled cut using M = 3,000 samples that are generated
from a standard Metropolis-Hastings MCMC algo-
rithm. In Figures 7(e)-7(f), we show results when
we model the uncertainty in the demand and sales
price of each newspaper using the multimodal rare-
event distribution from §4.7, and we build the approx-
imate zero-variance distribution for each sampled
cut using M = 3,000 samples that are generated
from the adaptive Metropolis algorithm described in
Haario et al. (2001).

Our results confirm that the relative advantage of
using MCMC-IS estimates depends on the inherent
variance of the underlying stochastic programming
model. In models where the uncertainty is modeled
using a lower-variance distribution, MCMC-IS pro-
duces estimates that are just as accurate as the esti-
mates produced by a QMC method, but that are
still more accurate than the estimates produced by
a CMC method. In models where the uncertainty is
modeled using a higher-variance or rare-event distri-
bution, MCMC-IS produces estimates that are much
more accurate than those produced by QMC and
CMC methods. Our numerical results also suggest
that MCMC-IS produces estimates with sample stan-
dard deviations that are far lower than the estimates
produced by CMC and QMC methods.

5. Numerical Experiments on a

Collection of Test Problems
In this section, we demonstrate the performance of
MCMC-IS when it is paired with a decomposition
algorithm to solve a collection of benchmark stochas-
tic programming models. Initial numerical results
appeared in Ustun (2012); we report results on a
larger set of test problems next.

5.1. Overview of the Test Problems
To verify that our findings from §4.8 generalize to
stochastic programming models, we have based the
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numerical experiments in this section on a collec-
tion of nine benchmark stochastic programming mod-
els from Ariyawansa and Felt (2004). Table 1 shows
the number of stages and number of random vari-
ables for the test problems used in the numerical
experiments. We have specifically chosen these mod-
els because they represented a diverse collection of
stochastic optimization problems. On one hand, the
models differ in the size of the instances, as well
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Figure 7 (Color online) Error and Variance of Estimates for a Newsvendor Problem Where the Uncertainty in Demand and Sales Price Is
Modeled Using a Lower-Variance Lognormal Distribution with & = 1 (7(a)-7(b)), a Higher-Variance Lognormal Distribution with
o =2 (7(¢)-7(d)), and Multimodal Rare-Event Distribution (7(e)-7(f))

as the number of stages and the number of random
variables in each stage. In addition, the models also
pertain to decision-making problems across a wide
range of application areas such as energy, finance, and
telecommunications.

It is worth noting that many of the problems in
Ariyawansa and Felt (2004) had to be modified to
be solved with a sampling-based approach. This was
because many problems were originally formulated
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Table 1 Overview of the Test Problems from Ariyawansa and

Felt (2004)
No. of No. of random
Problem stages (T) variables (}-; D;)
Airlift operation scheduling (AOS) 2 2
Forest planning (FP) 7 7
Electrical investment (EI) 2 10
Selecting currency options (SCO) 4 4
Financial planning model (FPM) 2 16
Design of batch chemical plants (DBCP) 2 4
Energy and environmental planning (EEP) 2 16
Telecommunications network planning (TNP) 2 15
Bond investment problem (BIP) 5 12

using discrete distributions and scenario trees (some-
times with three scenarios). In adapting these prob-
lems, we sought to change them as little as possible,
and have therefore replaced each discrete distribu-
tion with a closely matching continuous distribution
whose variance could be tuned. It is also worth not-
ing that some problems were also formulated using
integer variables. There have been efforts to extend
the SDDP framework to allow for integer variables,
however such an extension is beyond the scope of
the present paper. As such we have simply focused
on solving the integer relaxations for these problems.
Lastly, we note that we have omitted the “cargo net-
work scheduling” problem because it required the use
of a nonlinear programming solver. The full details
of our modifications are listed in the online supple-
ment, Section A (available as supplemental material
at http://dx.doi.org/10.1287 /ijoc.2014.0630).

5.2. Details on the Numerical Experiments

As in §4.8, we solved each of the models using the
SDDP algorithm and compared the estimated opti-
mal value Z when sampled cuts were generated using
MCMC-IS, CMC, and QMC.

We used M = 3,000 samples to construct an approx-
imate zero-variance importance sampling distribution
in all of our experiments, and varied the number of
samples to construct the sampled cut from N =2,000
to N =256,000. As before, we have ensured that all
sampling methods were allotted an equal number of
functional evaluations. In other words, the sampled
cuts for CMC and QMC were constructed using M +
M, + N total samples, where M, denotes the num-
ber of rejected samples from the MCMC algorithm in
MCMC-IS. Table 4 in the online supplement, Section B
gives the average number of rejected samples from
MCMC.

In the following experiments, we paired the SDDP
algorithm with the stopping rule proposed in Shapiro
(2011). This stopping rule terminates the SDDP
algorithm as soon as the upper confidence bound
0+z, /zUA'o\/N and the lower bound 6, is less than a
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prescribed tolerance level € > 0. In our experiments,
we have set @ =5% and € =10%. This means that we
obtain a solution that achieves a value that is within
10% of the optimal value with 95% confidence.

To report error statistics as in §4, we have true
optimal value for each model by solving each prob-
lem using the SDDP algorithm paired with the QMC
method and an extremely large number of samples
(N =107). Such a large simulation is impractical in
practice, but it was required to validate the correct-
ness of the different methods. Of course we have no
way of knowing that solutions obtained with N =107
samples is the correct one, but all three algorithms
converged to values that were within 1% of each
other. As before, we have computed sample average
values for all of our reported statistics using a total
of 30 simulations, and have normalized all reported
statistics for the sake of clarity.

5.3. Accuracy and Variance of the Estimates

In Figure 8, we provide a summary of the error and
sample standard deviation of the optimal value from
the nine models when they are solved using MCMC-
IS, QMC, and CMC methods. More specifically, these
plots show the median error and sample standard
deviation for different sample sizes when the mod-
els contain lower-variance distributions (Figure 8(a)),
higher-variance distributions (Figure 8(b)), and rare-
event multimodal distributions (Figure 8(c)). We have
plotted the average error across all nine test problems.
Given that the average values across different prob-
lems may be deceiving, we have also included a full
table of these results for each problem and each value
of N in section B of the online supplement. Neverthe-
less, these results are consistent across different test
problems, some of which are multistage and have a
markedly different structure.

When the models contain lower-variance distribu-
tions (Figure 8(a)), we see that all methods have low
error (less then 5% in all cases) but that MCMC-
IS estimates have lower variance. For models with
higher-variance distributions (Figure 8(b)), MCMC-
IS significantly outperforms the other methods, as
MCMC-IS estimates of the optimal value have less
error and less variance. This is also the case when
models contain rare-event distributions. In this case,
MCMC-IS is the only method that can produce esti-
mates near the true values using fewer than N =
256,000 samples; the other two sampling methods
exhibit an extremely slow convergence to the optimal
value and require a far greater number of samples to
converge.

In Figure 8(d) we plot the error times CPU time
for each method (in % error x CPU time(min)). This
metric provides insights into the relative “efficiency”
of the different methods as it balances the conflict-
ing requirements of obtaining highly accurate results
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Figure 8 (Color online) Median Results with the Collection of Test Problems
Notes. (a) MSE(Z) for models with lower-variance distributions. (b) MSE(Z) for models with higher-variance distributions. (c) MSE(Z) for models with rare-
event distribution. The error bars indicate the standard error associated with the solution obtained. (d) Error (%) x CPU Time (mins); for this plot we averaged

the low variance, moderate variance, and rare event results.

using the least amount of CPU time. From the results
in Figure 8(d) it can be seen that when the sample size
is small (e.g., N =2,000), our method performs simi-
larly to the other methods. This is because the advan-
tage of error reduction comes at a high computational
cost relative to the amount of time required to gen-
erate a small sample using CMC or QMC. When the
sample size is larger (e.g., N =8,000 and onward), we
see that the cost of MCMC-IS relative to other meth-
ods (while taking into consideration the error reduc-
tion) is much less.

5.4. When to Use MCMC-IS in
Stochastic Programming

The proposed algorithm has an additional overhead
when compared to CMC and QMC. The benefits of
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variance reduction are obvious from Figures 8(a)-8(c).
In Figure 8(d) we showed that the algorithm is also
efficient in the sense defined in §4. Depending on the
application, the efficiency measure we used may or
may not be appropriate. We therefore conclude the dis-
cussion on our numerical results by weighing up the
CPU overhead and standard error statistics from our
experiments. Based on these statistics, we offer some
insights on when the proposed algorithm is expected
to outperform conventional sampling methods.

In Table 2, columns two to four present the com-
putational overhead of MCMC-IS when compared
to either CMC or QMC (who chose the best from
the two). We report the median computational over-
head across the different problems in percentage terms
and in parenthesis we tabulate the median overhead
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Table 2 Computational Overhead and Variance Reduction Trade-offs for MCMC-IS

Median overhead (%) (secs)

Median var. reduction (%)

No. of samples (N x 10%) =1 og=2 Rare =1 g=2 Rare
2 111% (40) 134% (80) 61% (103) 45 56 74
4 92% (40) 143% (96) 80% (154) 50 57 73
8 79% (43) 118% (90) 61% (144) 48 54 75
16 74% (46) 71% (78) 47% (133) 48 58 74
32 58% (51) 25% (37) 16% (61) 47 56 73
64 11% (16) —20% (—61) —8% (—45) 50 56 72
128 —9% (—20) —29% (—141 —15% (—126) 53 62 73
256 —20% (—60) —30% (—208) —23% (—285) 50 62 74

in seconds. At first glance it may seem that SDDP com-
bined with MCMC-IS does not become competitive
until the number of samples becomes large (around
N = 64 x 10%). However, CPU time alone is not suf-
ficient to judge the performance of sampling algo-
rithms. Accuracy is also an important consideration.
To illustrate the trade-offs, consider the results for
o =1 for which our algorithm appears to be the least
competitive. In this low variance regime we still man-
age to have half the standard error of CMC/QMC
even for very large N. It is well known that to halve
the standard error of Monte Carlo estimates, one needs
to increase the number of samples by four. As a result
our algorithm becomes competitive not around N =
64 x 10% but around N = 16 x 10° to achieve a com-
parable level of accuracy. Whether this value is too
large to justify MCMC-IS will depend on the appli-
cation. Many engineering applications, especially in
energy systems, require a large number of samples
to obtain a sufficiently accurate approximation of the
recourse function. For example, in Lubin et al. (2011)
the authors found that they need 10* —10° scenarios to
represent a realistic energy system with uncertainties
distributed across time and space. Similarly, models in
finance can also require a large number of scenarios
(Gondzio and Grothey 2006). When the problem has
higher variance, the number of samples for which our
algorithms becomes competitive is even lower. Finally,
when the model has rare events, one would expect that
a large number of samples should be used to accu-
rately capture the uncertainties. Given the large error
of other methods (see Figure 8(c)), the proposed algo-
rithm clearly outperforms the other methods in the
sense that it has about 70% less variance and in terms
of CPU time becomes competitive after a moderate
number of samples. In summary, we believe that the
proposed method should be used when the model has
a moderate/high variance or rare events, and when
more than 16 x 10° samples are required to estimate
the recourse function.
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6. Conclusions

Multistage stochastic programming models are con-
sidered to be computationally challenging mainly
because the evaluation of the recourse function in-
volves the solution of a multidimensional integral.
Numerical methods such as sample average approxi-
mation (SAA) and stochastic dual dynamic program-
ming rely on sampling algorithms to approximately
estimate the recourse function. The sampling algo-
rithm used in conjunction with the optimization algo-
rithm has a major bearing on the efficiency of the
overall algorithm and on the accuracy of the solution.
As a result, the development of efficient sampling
methods is an active area of research in stochastic pro-
gramming.

The main contribution of this paper is the devel-
opment of an importance sampling framework that is
based on Markov chain Monte Carlo to generate
biased samples, and a kernel density estimation
method to compute the likelihood function. Impor-
tance sampling has been proposed before in the litera-
ture of stochastic programming. The proposed method
makes fewer restrictive assumptions than the impor-
tance sampling algorithm proposed in Dantzig and
Glynn (1990) and Infanger (1992), and in particular
can perform well even when the objective function is
not additively separable. Our numerical experiments
show that the method outperforms crude Monte Carlo
and quasi Monte Carlo algorithms when the problem
has moderate or high variance, and when the proba-
bility density function is difficult to sample from.

The results from numerical experiments suggest
that MCMC-IS yields accurate estimates for models
with lower-variance distributions and that it has a dis-
tinct advantage over sampling methods such as CMC
and QMC when models are equipped with higher-
variance distributions or rare-event distributions. We
have also implemented the importance sampling tech-
nique from Infanger (1992) and in most cases it did
not converge or was worse than CMC. We believe that
the method proposed in Infanger (1992) is suitable for
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problems with a particular structure and may need
further tuning for different test problems. Finally, it is
clear from our results that if the stochastic program
has rare events, then the proposed method is the only
one (from the ones we tested) that can produce reli-
able results. This last conclusion was not a surprise to
us given that the MCMC method is known to perform
well in such cases.

The importance sampling framework proposed
in this paper could be extended in many ways.
We have shown how importance sampling can be
used in the context of a decomposition algorithm and
expected value optimization. However, it is possible
to use our approach with different algorithms (e.g.,
SAA) and with different types of stochastic program-
ming models (e.g., risk-averse stochastic program-
ming). In addition, we have shown that the proposed
method performs well when compared to existing
methods.

Supplemental Material
Supplemental material to this paper is available at http://dx
.doi.org/10.1287 /ijoc.2014.0630.
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